Rack Level Modeling of Air Flow Through Perforated Tile in a Data Center

Author(s):  
Vaibhav K. Arghode ◽  
Pramod Kumar ◽  
Yogendra Joshi ◽  
Thomas S. Weiss ◽  
Gary Meyer

Effective air flow distribution through perforated tiles is required to efficiently cool servers in a raised floor data center. We present detailed computational fluid dynamics (CFD) modeling of air flow through a perforated tile and its entrance to the adjacent server rack. The realistic geometrical details of the perforated tile, as well as of the rack are included in the model. Generally models for air flow through perforated tiles specify a step pressure loss across the tile surface, or porous jump model based on the tile porosity. An improvement to this includes a momentum source specification above the tile to simulate the acceleration of the air flow through the pores, or body force model. In both of these models geometrical details of tile such as pore locations and shapes are not included. More details increase the grid size as well as the computational time. However, the grid refinement can be controlled to achieve balance between the accuracy and computational time. We compared the results from CFD using geometrical resolution with the porous jump and body force model solution as well as with the measured flow field using Particle Image Velocimetry (PIV) experiments. We observe that including tile geometrical details gives better results as compared to elimination of tile geometrical details and specifying physical models across and above the tile surface. A modification to the body force model is also suggested and improved results were achieved.

2013 ◽  
Vol 135 (3) ◽  
Author(s):  
Vaibhav K. Arghode ◽  
Pramod Kumar ◽  
Yogendra Joshi ◽  
Thomas Weiss ◽  
Gary Meyer

Effective air flow distribution through perforated tiles is required to efficiently cool servers in a raised floor data center. We present detailed computational fluid dynamics (CFD) modeling of air flow through a perforated tile and its entrance to the adjacent server rack. The realistic geometrical details of the perforated tile, as well as of the rack are included in the model. Generally, models for air flow through perforated tiles specify a step pressure loss across the tile surface, or porous jump model based on the tile porosity. An improvement to this includes a momentum source specification above the tile to simulate the acceleration of the air flow through the pores, or body force model. In both of these models, geometrical details of tile such as pore locations and shapes are not included. More details increase the grid size as well as the computational time. However, the grid refinement can be controlled to achieve balance between the accuracy and computational time. We compared the results from CFD using geometrical resolution with the porous jump and body force model solution as well as with the measured flow field using particle image velocimetry (PIV) experiments. We observe that including tile geometrical details gives better results as compared to elimination of tile geometrical details and specifying physical models across and above the tile surface. A modification to the body force model is also suggested and improved results were achieved.


2014 ◽  
Vol 136 (1) ◽  
Author(s):  
Vaibhav K. Arghode ◽  
Yogendra Joshi

Cold aisle containment is used in air cooled data centers to minimize direct mixing between cold and hot air. Here, we present room level air flow field investigation for open, partially and fully contained cold aisles. Our previous investigation for rack level modeling has shown that consideration of momentum rise above the tile surface, due to acceleration of air through the pores, significantly improves the predictive capability as compared to the generally used porous jump model. The porous jump model only specifies a step pressure loss at the tile surface without any influence on the flow field. The momentum rise could be included by either directly resolving the tile's pore structure or by artificially specifying a momentum source above the tile surface. In the present work, a modified body force model is used to artificially specify the momentum rise above the tile surface. The modified body force model was validated against the experimental data as well as with the model resolving the tile pore geometry at the rack level and then implemented at the room level. With the modified body force model, much higher hot air entrainment and higher server inlet temperatures were predicted as compared to the porous jump model. Even when the rack air flow requirement is matched with the tile air flow supply, considerable hot air recirculation is predicted. With partial containment, where only a curtain at the top of the cold aisle is deployed and side doors are opened, improved cold air delivery is suggested.


2016 ◽  
Vol 138 (3) ◽  
Author(s):  
Vaibhav K. Arghode ◽  
Yogendra Joshi

Generally, porous jump (PJ) model is used for rapid air flow simulations (without resolving the tile pore structure) through perforated floor tiles in data centers. The PJ model only specifies a step pressure loss across the tile surface, without any influence on the flow field. However, in reality, the downstream flow field is affected because of the momentum rise of air due to acceleration through the pores, and interaction of jets emerging from the pores. The momentum rise could be captured by either directly resolving the tile pore structure (geometrical resolution (GR) model) or simulated by specifying a momentum source above the tile surface (modified body force (MBF) model). Note that specification of momentum source obviates the need of resolving the tile pore geometry and, hence, requires considerably low computational effort. In previous investigations, the momentum source was imposed in a region above the tile surface whose width and length were same as the tile dimensions with a preselected height. This model showed improved prediction with the experimental data, as well as with the model resolving the tile pore geometry. In the present investigation, we present an analysis for obtaining the momentum source region dimensions and other associated input variables so that the MBF model can be applied for general cases. The results from this MBF model were compared with the GR model and good agreement was obtained.


2013 ◽  
Vol 135 (6) ◽  
Author(s):  
Vaibhav K. Arghode ◽  
Vikneshan Sundaralingam ◽  
Yogendra Joshi ◽  
Wally Phelps

Cold aisle containment is used in raised floor, air cooled data centers to minimize direct mixing between the supplied cold air and the hot air exiting from the servers. The objective of such a system is to minimize the server inlet air temperatures. In this paper, large scale air temperature field measurements are performed to investigate the hot air entrainment characteristics in the cold aisle in both open and contained aisle conditions. Both under-provisioned and over-provisioned scenarios were examined. Thermal field measurements suggest significant improvement in the cold air delivery for the case with contained aisle as compared to open aisle. Even for an over-provisioned case with open aisle, hot air entrainment was observed from the aisle entrance; however, for the contained aisle condition, close to perfect cold air delivery to the racks was observed. For both under-provisioned and over-provisioned cases, the aisle containment tended to equalize the tile and rack air flow rates. Balance air is expected to be leaked into or out of the containment to makeup the flow rate difference for the contained aisle condition. The CFD modeling strategy at the aisle level is also discussed for open aisle condition. Our previous investigation for rack level modeling has shown that consideration of momentum rise above the tile surface improves the predictive capability as compared to the generally used porous jump model. The porous jump model only specifies a step pressure loss at the tile surface without any influence on flow field. The momentum rise above the tile surface was included using a modified body force model by artificially specifying a momentum source above the tile surface. The modified body force model suggested higher air entrainment and higher reach of cold air as compared to the porous jump model. The modified body force model was able to better capture hot air entrainment through aisle entrance and compared well with the experimental data for the end racks. The generally used porous jump model suggested lower hot air entrainment and under predicted the server inlet temperatures for end racks.


Author(s):  
R. V. Chima

In this work computational models were developed and used to investigate applications of vortex generators (VGs) to turbomachinery. The work was aimed at increasing the efficiency of compressor components designed for the NASA Ultra Efficient Engine Technology (UEET) program. Initial calculations were used to investigate the physical behavior of VGs. A parametric study of the effects of VG height was done using 3-D calculations of isolated VGs. A body force model was developed to simulate the effects of VGs without requiring complicated grids. The model was calibrated using 2-D calculations of the VG vanes and was validated using the 3-D results. Then three applications of VGs to a compressor rotor and stator were investigated: 1. The results of the 3-D calculations were used to simulate the use of small casing VGs used to generate rotor preswirl or counterswirl. Computed performance maps were used to evaluate the effects of VGs. 2. The body force model was used to simulate large partspan splitters on the casing ahead of the stator. Computed loss buckets showed the effects of the VGs. 3. The body force model was also used to investigate the use of tiny VGs on the stator suction surface for controlling secondary flows. Near-surface particle traces and exit loss profiles were used to evaluate the effects of the VGs.


Author(s):  
Palak Saini ◽  
Jeff Defoe

Abstract Body force models enable inexpensive numerical simulations of turbomachinery. The approach replaces the blades with sources of momentum/energy. Such models capture a “smeared out” version of the blades’ effect on the flow, reducing computational cost. The body force model used in this paper has been widely used in aircraft engine applications. Its implementation for low speed, low solidity (few blades) turbomachines, such as automotive cooling fans, enables predictions of cooling flows and component temperatures without calibrated fan curves. Automotive cooling fans tend to have less than 10 blades, which is approximately 50% of blade counts for modern jet engine fans. The effect this has on the body force model predictions is unknown and the objective of this paper is to quantify how varying blade count affects the accuracy of the predictions for both uniform and non-uniform inflow. The key findings are that reductions in blade metal blockage combined with spanwise flow redistribution drives the body force model to more accurately predict work coefficient as the blade count decreases, and that reducing the number of blades is found to have negligible impacts on upstream influence and distortion transfer in non-uniform inflow until extremely low blade counts (such as 2) are applied.


Author(s):  
Quentin J. Minaker ◽  
Jeffrey J. Defoe

Modern aircraft engines must accommodate inflow distortions entering the engines as a consequence of modifying the size, shape, and placement of the engines and/or nacelle to increase propulsive efficiency and reduce aircraft weight and drag. It is important to be able to predict the interactions between the external flow and the fan early in the design process. This is challenging due to computational cost and limited access to detailed fan/engine geometry. In this, the first part of a two part paper, we present a design process that produces a fan gas path and body force model with performance representative of modern high bypass ratio turbofan engines. The target users are those with limited experience in turbomachinery design or limited access to fan geometry. We employ quasi-1D analysis and a series of simplifying assumptions to produce a gas path and the body force model inputs. Using a body force model of the fan enables steady computational fluid dynamics simulations to capture fan–distortion interaction. The approach is verified for the NASA Stage 67 transonic fan. An example of the design process is also included; the model generated is shown to meet the desired fan stagnation pressure ratio and thrust to within 1%.


2016 ◽  
Vol 26 (7) ◽  
pp. 2048-2065 ◽  
Author(s):  
William Thollet ◽  
Guillaume Dufour ◽  
Xavier Carbonneau ◽  
Florian Blanc

Purpose The purpose of this paper is to explore a methodology that allows to represent turbomachinery rotating parts by replacing the blades with a body force field. The objective is to capture interactions between a fan and an air intake at reduced cost, as compared to full annulus unsteady computations. Design/methodology/approach The blade effects on the flow are taken into account by adding source terms to the Navier-Stokes equations. These source terms give the proper amount of flow turning, entropy, and blockage to the flow. Two different approaches are compared: the source terms can be computed using an analytic model, or they can directly be extracted from RANS computations with the blade’s geometry. Findings The methodology is first applied to an isolated rotor test case, which allows to show that blockage effects have a strong impact on the performance of the rotor. It is also found that the analytic body force model underestimates the mass flow in the blade row for choked conditions. Finally, the body force approach is used to capture the coupling between a fan and an air intake at high angle of attacks. A comparison with full annulus unsteady computations shows that the model adequately captures the potential effects of the fan on the air intake. Originality/value To the authors’ knowledge, it is the first time that the analytic model used in this paper is combined with the blockage source terms. Furthermore, the capability of the model to deal with flows in choked conditions was never assessed.


Author(s):  
Yizhong Xu ◽  
Mohamed Y Mustafa ◽  
Jason Knight ◽  
Muhammad Virk ◽  
George Haritos

Author(s):  
S. Pazireh ◽  
J. J. Defoe

Abstract Body force modelling in numerical simulations of axial compressors and fans has been used extensively in the literature to assess aerodynamic performance in uniform and non-uniform flow at relatively low computational cost. Existing approaches require calibration or, in the case of purely analytical models, are unable to accurately predict losses. It can also be challenging to capture the chordwise loading distribution with existing analytical models. This paper introduces a new body force modelling approach in which blade loading is computed using an isolated-airfoil, analytical model supplemented by a trained artificial-neural-network-based correction factor for finite pitch effects. The loading model is derived from potential flow theory and accounts for both camber and thickness effects; it captures both the overall and local loading. The approach is currently implemented for low-Mach number (incompressible) flows. The body forces causing flow turning derive directly from the corrected loading model. Forces arising from viscous losses are modeled by solving the integral boundary layer equations along streamlines within blade rows based on the fictitious edge velocities computed by the loading model. The viscous loss force is a function of the local dissipation coefficients. The approach is implemented within a traditional finite-volume computational fluid dynamics solver. In this paper, the application is limited to 2D cascades. To assess the approach, results from the body force model are compared to blade-to-blade solutions from MISES. The key findings are (1) that a relatively modest set of training data for the neural network produces a robust finite pitch correction, and (2) that the modelling approach is able to successfully capture the flow turning and losses associated with a variety of low-speed compressor cascades without any calibration specific to the blade row(s) being modeled.


Sign in / Sign up

Export Citation Format

Share Document