A Novel Approach for Software Requirement Prioritization Based Upon Non Functional Requirements

Author(s):  
Kashif Ayub ◽  
Farooque Azam ◽  
Muhammad Waseem Anwar ◽  
Anam Amjad ◽  
Muhammad Shah Jahan
Author(s):  
Flávio Craveiro ◽  
João Meneses de Matos ◽  
Helena Bártolo ◽  
Paulo Bártolo

Traditionally the construction sector is very conservative, risk averse and reluctant to adopt new technologies and ideas. The construction industry faces great challenges to develop more innovative and efficient solutions. In recent years, significant advances in technology and more sustainable urban environments has been creating numerous opportunities for innovation in automation. This paper proposes a new system based on extrusion-based technologies aiming at solving some limitations of current technologies to allow a more efficient building construction with organic forms and geometries, based on sustainable eco principles. This novel approach is described through a control deposition software. Current modeling techniques focus only on capturing the geometric information and cannot satisfy the requirements from modeling the components made of multi-heterogeneous materials. There is a great deal of interest in tailoring structures so the functional requirements can vary with location. The proposed functionally graded material deposition (FGM) system will allow a smooth variation of material properties to build up more efficient buildings regarding thermal, acoustic and structural conditions.


2019 ◽  
Vol 92 (2) ◽  
pp. 229-236
Author(s):  
Svetoslav Zabunov ◽  
Roumen Nedkov

Purpose This paper aims to reveal the authors’ conceptual and experimental work on an innovative avionics paradigm for small unmanned aerial vehicles (UAVs). Design/methodology/approach This novel approach stipulates that, rather than being centralized at the autopilot, control of avionics devices is instead distributed among controllers – spread over the airframe span, in response to avionics devices’ natural location requirements. The latter controllers are herein referred to as edge controllers by the first author. Findings The edge controller manifests increased efficiency in a number of functions, some of which are unburdened from the autopilot. The edge controller establishes a new paradigm of structure and design of small UAVs avionics such that any functionality related to the periphery of the airframe is implemented in the controller. Research limitations/implications The research encompasses a workbench prototype testing on a breadboard, as the presented idea is a novel concept. Further, another test has been conducted with four controllers mounted on a quadcopter; results from the vertical attitude sustenance are disclosed herein. Practical implications The motivation behind developing this paradigm was the need to position certain avionics devices at different locations on the airframe. Due to their inherent functional requirements, most of these devices have hitherto been placed at the periphery of the aircraft construction. Originality/value The current paper describes the novel avionics paradigm, compares it to the standard approach and further reveals two experimental setups with testing results.


2013 ◽  
pp. 313-330 ◽  
Author(s):  
Fabio Marturana ◽  
Simone Tacconi ◽  
Giuseppe F. Italiano

With the global diffusion of cybercrime, the ever-growing market penetration of high-performance and low-cost personal digital devices, and the commercial success of cloud computing, the area of digital forensics is faced with various new challenges that must be taken seriously. In this chapter, the authors describe a novel approach to digital investigations based on the emerging “Forensics as a Service” (FaaS) model. This model attempts to optimize Law Enforcement Agency’s (LEA) forensic procedures, reduce complexity, and save operational costs. Inspired by previous work on distributed computing for forensic analysis, this chapter provides the reader with design guidelines of a FaaS platform for secure service delivery. The proposed FaaS platform should be able to support investigators and practitioners in their daily tasks (e.g. digital evidence examination, analysis, and reporting) once implemented by a cloud forensic provider or internally by a LEA. In this chapter, the authors also present the architecture components, interfaces, communication protocols, functional and non-functional requirements, as well as security specifications of the proposed framework in detail.


2015 ◽  
pp. 2288-2306
Author(s):  
Fabio Marturana ◽  
Simone Tacconi ◽  
Giuseppe F. Italiano

With the global diffusion of cybercrime, the ever-growing market penetration of high-performance and low-cost personal digital devices, and the commercial success of cloud computing, the area of digital forensics is faced with various new challenges that must be taken seriously. In this chapter, the authors describe a novel approach to digital investigations based on the emerging “Forensics as a Service” (FaaS) model. This model attempts to optimize Law Enforcement Agency's (LEA) forensic procedures, reduce complexity, and save operational costs. Inspired by previous work on distributed computing for forensic analysis, this chapter provides the reader with design guidelines of a FaaS platform for secure service delivery. The proposed FaaS platform should be able to support investigators and practitioners in their daily tasks (e.g. digital evidence examination, analysis, and reporting) once implemented by a cloud forensic provider or internally by a LEA. In this chapter, the authors also present the architecture components, interfaces, communication protocols, functional and non-functional requirements, as well as security specifications of the proposed framework in detail.


Sign in / Sign up

Export Citation Format

Share Document