A Model Predictive Control Scheme for Autonomous Underwater Vehicle Formation Control

Author(s):  
Rui Gomes ◽  
Fernando Lobo Pereira
2014 ◽  
Vol 670-671 ◽  
pp. 1370-1377 ◽  
Author(s):  
Lin Lin Wang ◽  
Hong Jian Wang ◽  
Li Xin Pan

In order to improve the ability of independent planning for AUV (Autonomous Underwater Vehicle), a new method of motion planning based on SBMPC (Sampling Based Model Predictive Control) is proposed, which is combined with model predictive control theory. Input sampling is directly made in control variable space, and sampling data is substituted into the predictive model of AUV motion. Then surge velocity and yaw angular rate in next sampling time are obtained through calculations. If predictive states are evaluated according to the performance index previously defined, optimal prediction of AUV states in next sampling can be used to realize motion planning optimization. Effects of three sampling methods (viz. uniform sampling, Halton sampling and CVT sampling) on motion planning performance are also compared in simulations. Statistical analysis demonstrates that CVT sampling points has the most uniform coverage in two-dimensional plane when amount of sampling points is the same for three methods. Simulation results show that it is effective and feasible to plan a route for AUV by using CVT sampling and rolling optimization of MPC (Model Predictive Control).


2019 ◽  
Vol 26 (2) ◽  
pp. 104-114 ◽  
Author(s):  
Hossein Nejatbakhsh Esfahani

Abstract This paper proposes an improved Model Predictive Control (MPC) approach including a fuzzy compensator in order to track desired trajectories of autonomous Underwater Vehicle Manipulator Systems (UVMS). The tracking performance can be affected by robot dynamical model uncertainties and applied external disturbances. Nevertheless, the MPC as a known proficient nonlinear control approach should be improved by the uncertainty estimator and disturbance compensator particularly in high nonlinear circumstances such as underwater environment in which operation of the UVMS is extremely impressed by added nonlinear terms to its model. In this research, a new methodology is proposed to promote robustness virtue of MPC that is done by designing a fuzzy compensator based on the uncertainty and disturbance estimation in order to reduce or even omit undesired effects of these perturbations. The proposed control design is compared with conventional MPC control approach to confirm the superiority of the proposed approach in terms of robustness against uncertainties, guaranteed stability and precision.


Sensors ◽  
2018 ◽  
Vol 18 (7) ◽  
pp. 2321 ◽  
Author(s):  
Feng Yao ◽  
Chao Yang ◽  
Xing Liu ◽  
Mingjun Zhang

Due to the growing interest using model predictive control (MPC), there are more and more researches about the applications of MPC on autonomous underwater vehicle (AUV), and these researches are mainly focused on simulation and simple application of MPC on AUV. This paper focuses on the improvement of MPC based on the state space model of an AUV. Unlike the previous approaches using a fixed weighting matrix, in this paper, a coefficient, varied with the error, is introduced to adjust the control increment vector weighting matrix to reduce the settling time. Then, an analysis on the effect of the adjustment to the stability is given. In addition, there is always a lag between the AUV real trajectory and the desired trajectory when the AUV tracks a continuous trajectory. To solve this problem, a simple re-planning of the desired trajectory is developed. Specifically, the point certain steps ahead from current time on the desired trajectory is treated as the current desired point and input to the controller. Finally, experimental results for depth control are given to demonstrate the feasibility and effectiveness of the improved MPC. Experimental results show that the method of real-time adjusting control increment weighting matrix can reduce settling time by about 2 s when tracking step trajectory of 1 m, and the simple re-planning of the desired trajectory method can reduce the average of absolute error by about 15% and standard deviation of error by about 17%.


Sign in / Sign up

Export Citation Format

Share Document