Perspectives of improvement of AC power transmission based on achievements of modern power electronics

Author(s):  
Yevgeny I. Sokol ◽  
Yury P. Goncharov ◽  
Vladimir V. Ivakhno ◽  
Vladimir V. Zamaruev ◽  
Sergey Y. Krivosheev ◽  
...  
2015 ◽  
Vol 30 (7) ◽  
pp. 3553-3562 ◽  
Author(s):  
Rohit Moghe ◽  
Rajendra P. Kandula ◽  
Amrit Iyer ◽  
Deepak Divan

2018 ◽  
Vol 57 ◽  
pp. 03003
Author(s):  
Xiao Fan ◽  
Zhou Kunpeng ◽  
Wang Tao ◽  
Cao Kan ◽  
Rao Yuze

In order to cope with the great pressure caused by the gradually exhaustion of fossil energy and environmental protection and climate warming, the development and application of the renewable energy has become an important foundation and development direction in the field of energy. However, due to the impact of energy and resource endowment, China’s load center and renewable energy base into the characteristics of long-range reverse distribution, the use of long-distance large-capacity transmission potential is necessary. With the “strong DC system and weak AC system” problem of the company power grid is increasingly prominent, the higher demand of dynamic reactive power support is put forward in the UHV DC power transmission project. Then, the large-capacity dynamic reactive power of new generation synchronous condenser is large-scale built up in the UHV DC/AC power system. Due to the high requirement of response speed and capacity in the UHV DC power transmission, the structure, dynamic characteristics, excitation control and relay protection and other aspects of the large synchronous condenser are different from generators and traditional synchronous condenser. Based on this, the dynamic reactive power demand of UHV DC power system is analyzed in this paper. Then, the main situation of large synchronous condenser is considered. In addition, the key points of the excitation control system and protection system are also discussed in this paper. There are important theoretical and practical significance for the safe and reliable operation of the UHV DC/AC power system.


Author(s):  
V M Rulevskiy ◽  
V G Bukreev ◽  
E O Kuleshova ◽  
E B Shandarova ◽  
S M Shandarov ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document