Digital control of magnetic induction waveform applied to silicon steel sheets characterization

Author(s):  
Matheus Levi P. Pinheiro ◽  
Wander Goncalves da Silva ◽  
Adalberto Jose Batista
2007 ◽  
Vol 42 (20) ◽  
pp. 8667-8670 ◽  
Author(s):  
Gao Xiuhua ◽  
Qi Kemin ◽  
Qiu Chunlin ◽  
Tian Yanwen

1989 ◽  
Vol 11 (2-4) ◽  
pp. 159-170 ◽  
Author(s):  
M. Shiozaki ◽  
Y. Kurosaki

The anisotropy of magnetic properties in non-oriented electrical steel sheets can be evaluated by measuring Epstein specimens in the radial directions. The magnetic properties measured on ring cores are practically equal to the approximate values of magnetic properties determined by Epstein specimens in the radial directions. Non-oriented electrical steel sheets with anisotropy are not desirable for motors but are suitable for transformers and fluorescent lamp ballasts. The core loss and magnetic induction as measured with ring specimens are better with non-oriented electrical steel sheets with anisotropy than with non-oriented electrical steel sheets with random crystallographic orientation. This phenomenon depends on the texture change of the product.


2019 ◽  
Vol 55 (1) ◽  
pp. 39-46
Author(s):  
W. Kong ◽  
D.G. Cang

The submerged entry nozzle (SEN) clogging has been happening during continuous casting (or CC for short) for nonoriented silicon steel. To solve the problem, the paper studied a flow rate through SEN, a node attached to one of them, and the impact on the clogging. The results showed that when SEN is clogged seriously, the casting speed has to decrease below the target casting speed and that SEN clogging can be predicted by comparing the actual value and the theoretical one of a casting speed. Al2O3 and its composite inclusions caused the SEN clogging and the addition of Ca can solve SEN clogging during CC of the silicon steel both theoretically and practically. Furthermore, the impact of the addition of Ca on the magnetic properties of the steel were analyzed. The results showed that the core loss and the magnetic induction of the silicon steel decreased by using the addition of Ca, which generated more dissolved Aluminum, and the addition of Ca generated more harmful textures, which reduced the magnetic induction.


1999 ◽  
Vol 35 (5) ◽  
pp. 3373-3375 ◽  
Author(s):  
K.N. Chai ◽  
N.H. Heo ◽  
J.G. Na ◽  
H.-T. Jeong ◽  
S.R. Lee

2020 ◽  
Vol 14 (3) ◽  
pp. 242-249
Author(s):  
Fabian Müller ◽  
Gregor Bavendiek ◽  
Nora Leuning ◽  
Benedikt Schauerte ◽  
Kay Hameyer

Sensors ◽  
2019 ◽  
Vol 19 (23) ◽  
pp. 5105
Author(s):  
Chen ◽  
Lin ◽  
Chang ◽  
Cheng ◽  
Chen ◽  
...  

In this paper, we demonstrate an innovative electromagnetic targeting system utilizing a passive magnetic-flux-concentrator for tracking endobronchoscope used in the diagnosis process of lung cancer tumors/lesions. The system consists of a magnetic-flux emitting coil, a magnetic-flux receiving electromagnets-array, and high permeability silicon-steel sheets rolled as a collar (as the passive magnetic-flux-concentrator) fixed in a guide sheath of an endobronchoscope. The emitting coil is used to produce AC magnetic-flux, which is consequently received by the receiving electromagnets-array. Due to the electromagnetic-induction, a voltage is induced in the receiving electromagnets-array. When the endobronchoscope’s guide sheath (with the silicon-steel collar) travels between the emitting coil and the receiving electromagnets-arrays, the magnetic flux is concentrated by the silicon-steel collar and thereby the induced voltage is changed. Through analyzing the voltage–pattern change, the location of the silicon–steel collar with the guide sheath is targeted. For testing, a bronchial-tree model for training medical doctors and operators is used to test our system. According to experimental results, the system is successfully verified to be able to target the endobronchoscope in the bronchial-tree model. The targeting errors on the x-, y- and z-axes are 9 mm, 10 mm, and 5 mm, respectively.


Sign in / Sign up

Export Citation Format

Share Document