Improved innovation-based adaptive estimation for measurement noise uncertainty in SINS/GNSS integration system

Author(s):  
Wei Gao ◽  
Jingchun Li ◽  
Ya Zhang ◽  
Guochen Wang ◽  
Xuran Sun
Sensors ◽  
2018 ◽  
Vol 18 (11) ◽  
pp. 3809 ◽  
Author(s):  
Yushi Hao ◽  
Aigong Xu ◽  
Xin Sui ◽  
Yulei Wang

Recently, the integration of an inertial navigation system (INS) and the Global Positioning System (GPS) with a two-antenna GPS receiver has been suggested to improve the stability and accuracy in harsh environments. As is well known, the statistics of state process noise and measurement noise are critical factors to avoid numerical problems and obtain stable and accurate estimates. In this paper, a modified extended Kalman filter (EKF) is proposed by properly adapting the statistics of state process and observation noises through the innovation-based adaptive estimation (IAE) method. The impact of innovation perturbation produced by measurement outliers is found to account for positive feedback and numerical issues. Measurement noise covariance is updated based on a remodification algorithm according to measurement reliability specifications. An experimental field test was performed to demonstrate the robustness of the proposed state estimation method against dynamic model errors and measurement outliers.


2020 ◽  
Vol 71 (1) ◽  
pp. 60-64
Author(s):  
Ravi Pratap Tripathi ◽  
Ashutosh Kumar Singh ◽  
Pavan Gangwar

AbstractKalman Filter (KF) is the most widely used estimator to estimate and track the states of target. It works well when noise parameters and system models are well defined in advance. Its performance degrades and starts diverging when noise parameters (mainly measurement noise) changes. In the open literature available researchers has used the concept of Fractional Order Kalman Filter (FOKF) to stabilize the KF. However in the practical application there is a variation in the measurement noise, which will leads to divergence and degradation in the FOKF approach. An Innovation Adaptive Estimation (IAE) based FOKF algorithm is presented in this paper. In order to check the stability of the proposed method, Lyapunov theory is used. Position tracking simulation has been performed for performance evaluation, which shows the better result and robustness.


Sign in / Sign up

Export Citation Format

Share Document