Predicting Design conflicts using Declarative Language Approach

Author(s):  
Yuan Cheng ◽  
Fazhi He ◽  
Xiao Lv
Designs ◽  
2021 ◽  
Vol 5 (2) ◽  
pp. 31
Author(s):  
Daniel Moran ◽  
Atila Ertas ◽  
Utku Gulbulak

The continued displacement of refugees from their homes and homelands (now greater than 50 million people worldwide) places increased focus and attention on evolving the designs of temporary housing that is available to be provided to the refugee population, especially in rural areas where housing does not already exist and must be constructed in very little time. Complex engineering problems involving social issues, such as this case study, benefit from the use of Integrated Transdisciplinary (TD) Tools (ITDT) to effectively and efficiently address the design questions related to them. The integrated use of TD Tools such as Kano Analysis, KJ Diagrams, Critical to Quality (CTQ), House of Quality (HOQ)/Quality Function Design (QFD), Theory of Inventive Problem Solving (TRIZ), Axiomatic Design (AD), Interpretive Structural Modeling (ISM), and Design Structure Matrix (DSM) through an end-to-end unique design process leads to innovation and elimination of design conflicts for especially complicated design problems. The objective of this study is to examine the design of temporary refugee housing using integrated TD tools mentioned above. This research concludes that the use of the ITDT approach provides an innovative, decoupled design.


2016 ◽  
Vol 11 (2) ◽  
pp. 163-181
Author(s):  
Ali Khebizi ◽  
Hassina Seridi-Bouchelaghem ◽  
Bouallem Benatallah ◽  
Farouk Toumani

PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e7170
Author(s):  
Daniel Liu

Next-generation sequencing technologies create large, multiplexed DNA sequences that require preprocessing before any further analysis. Part of this preprocessing includes demultiplexing and trimming sequences. Although there are many existing tools that can handle these preprocessing steps, they cannot be easily extended to new sequence schematics when new pipelines are developed. We present Fuzzysplit, a tool that relies on a simple declarative language to describe the schematics of sequences, which makes it incredibly adaptable to different use cases. In this paper, we explain the matching algorithms behind Fuzzysplit and we provide a preliminary comparison of its performance with other well-established tools. Overall, we find that its matching accuracy is comparable to previous tools.


Sign in / Sign up

Export Citation Format

Share Document