A Novel Approach using Deep Neural Network Vessel Segmentation & Retinal Disease Detection

Author(s):  
Nancy Kaur ◽  
Girija Chetty ◽  
Lavneet Singh
2021 ◽  
pp. 1-15
Author(s):  
Wenjun Tan ◽  
Luyu Zhou ◽  
Xiaoshuo Li ◽  
Xiaoyu Yang ◽  
Yufei Chen ◽  
...  

BACKGROUND: The distribution of pulmonary vessels in computed tomography (CT) and computed tomography angiography (CTA) images of lung is important for diagnosing disease, formulating surgical plans and pulmonary research. PURPOSE: Based on the pulmonary vascular segmentation task of International Symposium on Image Computing and Digital Medicine 2020 challenge, this paper reviews 12 different pulmonary vascular segmentation algorithms of lung CT and CTA images and then objectively evaluates and compares their performances. METHODS: First, we present the annotated reference dataset of lung CT and CTA images. A subset of the dataset consisting 7,307 slices for training and 3,888 slices for testing was made available for participants. Second, by analyzing the performance comparison of different convolutional neural networks from 12 different institutions for pulmonary vascular segmentation, the reasons for some defects and improvements are summarized. The models are mainly based on U-Net, Attention, GAN, and multi-scale fusion network. The performance is measured in terms of Dice coefficient, over segmentation ratio and under segmentation rate. Finally, we discuss several proposed methods to improve the pulmonary vessel segmentation results using deep neural networks. RESULTS: By comparing with the annotated ground truth from both lung CT and CTA images, most of 12 deep neural network algorithms do an admirable job in pulmonary vascular extraction and segmentation with the dice coefficients ranging from 0.70 to 0.85. The dice coefficients for the top three algorithms are about 0.80. CONCLUSIONS: Study results show that integrating methods that consider spatial information, fuse multi-scale feature map, or have an excellent post-processing to deep neural network training and optimization process are significant for further improving the accuracy of pulmonary vascular segmentation.


Author(s):  
D.T.V. Dharmajee Rao ◽  
K.V. Ramana

<p style="text-indent: 1.27cm; margin-bottom: 0.35cm; line-height: 115%;" align="justify"><span style="font-family: Arial,serif;"><span style="font-size: small;"><em>Deep Neural Network training algorithms consumes long training time, especially when the number of hidden layers and nodes is large. Matrix multiplication is the key operation carried out at every node of each layer for several hundreds of thousands of times during the training of Deep Neural Network. Blocking is a well-proven optimization technique to improve the performance of matrix multiplication. Blocked Matrix multiplication algorithms can easily be parallelized to accelerate the performance further. This paper proposes a novel approach of implementing Parallel Blocked Matrix multiplication algorithms to reduce the long training time. The proposed approach was implemented using a parallel programming model OpenMP with collapse() clause for the multiplication of input and weight matrices of Backpropagation and Boltzmann Machine Algorithms for training Deep Neural Network and tested on multi-core processor system. Experimental results showed that the proposed approach achieved approximately two times speedup than classic algorithms.</em></span></span></p>


2021 ◽  
Author(s):  
M. Madhumalini ◽  
T. Meera Devi

Abstract Glaucoma is a retinal disease that damages the eye's optic nerve, frequently causing an irreversible loss of vision. However, the accurate diagnosis of this disease is difficult but early-stage diagnosis may cure this retinal disease. The objective of this research is to diagnose glaucoma disease in the top of the eye's optical nerve. The proposed approach detects glaucoma via four major steps namely Data enhancement phase, segmentation phase, feature extraction phase, and classification phase by the fractional gravitational search-based hybrid deep neural network (FGSA-HDNN) classifier. The proposed classifier is used for the exact classification of glaucoma infected images and normal images. Here, the proposed approach utilizes the statistical, textural, and vessel features from the segmented output. Also, the proposed FGSO algorithm is used for testing the deep neural network. From the experimental results, it is observed that the proposed glaucoma detection has obtained a sensitivity of 99.64%, a specificity of 97.84%, and an accuracy of 98.75% that outperforms other state-of-art methods.


Sign in / Sign up

Export Citation Format

Share Document