The Research of 3D Reconstruction from Uncalibrated Image Sequences Combined with 3D Models

Author(s):  
Shuai Liu ◽  
Lingli Zhao ◽  
Junsheng Li ◽  
Haicheng Xu
2019 ◽  
Vol 11 (13) ◽  
pp. 1550 ◽  
Author(s):  
Tobias Koch ◽  
Marco Körner ◽  
Friedrich Fraundorfer

Small-scaled unmanned aerial vehicles (UAVs) emerge as ideal image acquisition platforms due to their high maneuverability even in complex and tightly built environments. The acquired images can be utilized to generate high-quality 3D models using current multi-view stereo approaches. However, the quality of the resulting 3D model highly depends on the preceding flight plan which still requires human expert knowledge, especially in complex urban and hazardous environments. In terms of safe flight plans, practical considerations often define prohibited and restricted airspaces to be accessed with the vehicle. We propose a 3D UAV path planning framework designed for detailed and complete small-scaled 3D reconstructions considering the semantic properties of the environment allowing for user-specified restrictions on the airspace. The generated trajectories account for the desired model resolution and the demands on a successful photogrammetric reconstruction. We exploit semantics from an initial flight to extract the target object and to define restricted and prohibited airspaces which have to be avoided during the path planning process to ensure a safe and short UAV path, while still aiming to maximize the object reconstruction quality. The path planning problem is formulated as an orienteering problem and solved via discrete optimization exploiting submodularity and photogrammetrical relevant heuristics. An evaluation of our method on a customized synthetic scene and on outdoor experiments suggests the real-world capability of our methodology by providing feasible, short and safe flight plans for the generation of detailed 3D reconstruction models.


2021 ◽  
Vol 7 (2) ◽  
pp. 335-338
Author(s):  
Sina Walluscheck ◽  
Thomas Wittenberg ◽  
Volker Bruns ◽  
Thomas Eixelberger ◽  
Ralf Hackner

Abstract For the image-based documentation of a colonoscopy procedure, a 3D-reconstuction of the hollow colon structure from endoscopic video streams is desirable. To obtain this reconstruction, 3D information about the colon has to be extracted from monocular colonoscopy image sequences. This information can be provided by estimating depth through shape-from-motion approaches, using the image information from two successive image frames and the exact knowledge of their disparity. Nevertheless, during a standard colonoscopy the spatial offset between successive frames is continuously changing. Thus, in this work deep convolutional neural networks (DCNNs) are applied in order to obtain piecewise depth maps and point clouds of the colon. These pieces can then be fused for a partial 3D reconstruction.


Author(s):  
S. Hosseinian ◽  
H. Arefi

The 3D concept is extremely important in clinical studies of human body. Accurate 3D models of bony structures are currently required in clinical routine for diagnosis, patient follow-up, surgical planning, computer assisted surgery and biomechanical applications. However, 3D conventional medical imaging techniques such as computed tomography (CT) scan and magnetic resonance imaging (MRI) have serious limitations such as using in non-weight-bearing positions, costs and high radiation dose(for CT). Therefore, 3D reconstruction methods from biplanar X-ray images have been taken into consideration as reliable alternative methods in order to achieve accurate 3D models with low dose radiation in weight-bearing positions. Different methods have been offered for 3D reconstruction from X-ray images using photogrammetry which should be assessed. In this paper, after demonstrating the principles of 3D reconstruction from X-ray images, different existing methods of 3D reconstruction of bony structures from radiographs are classified and evaluated with various metrics and their advantages and disadvantages are mentioned. Finally, a comparison has been done on the presented methods with respect to several metrics such as accuracy, reconstruction time and their applications. With regards to the research, each method has several advantages and disadvantages which should be considered for a specific application.


Author(s):  
Timm Schneevoigt ◽  
Christopher Schroers ◽  
Joachim Weickert

Author(s):  
Isidora Đurić ◽  
Ratko Obradović ◽  
Nebojša Ralević

This paper presents an overview of the use of Augmented Reality in the area of architecture and cultural heritage visualization. The subject of this research are objects that have significant cultural and historical values which, for different reasons, cannot be perceived in their real environment. Using two case-studies, the processes of 3D reconstruction, optimization and AR presentation of the reality models are described in detail. The 3D models are created by using photogrammetry and the AR visualization is performed by using an existing platform for the AR presentation. The aim of the paper is to emphasize the importance of incorporating photogrammetry and augmented reality for the visualization of different types of object features.


Sign in / Sign up

Export Citation Format

Share Document