Resarch of Mechanical Components' Performance Degradation Based on Dynamic Fuzzy Neural Network

Author(s):  
Shi Rongbo ◽  
Guo Zhiping ◽  
Song Zhiyong ◽  
Yan Jiming
2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Xiaochen Zhang ◽  
Hongli Gao ◽  
Haifeng Huang

To evaluate the performance of ball screw, screw performance degradation assessment technology based on quantum genetic algorithm (QGA) and dynamic fuzzy neural network (DFNN) is studied. The ball screw of the CINCINNATIV5-3000 machining center is treated as the study object. Two Kistler 8704B100M1 accelerometers and a Kistler 8765A250M5 three-way accelerometer are installed to monitor the degradation trend of screw performance. First, screw vibration signal features are extracted both in time domain and frequency domain. Then the feature vectors can be obtained by principal component analysis (PCA). Second, the initialization parameters of the DFNN are optimized by means of QGA. Finally, the feature vectors are inputted to DFNN for training and then get the screw performance degradation model. The experiment results show that the screw performance degradation model could effectively evaluate the performance of NC machine screw.


2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Jingbo Gai ◽  
Yifan Hu ◽  
Junxian Shen

Bearing performance degradation assessment has great significance to condition-based maintenance (CBM). A novel degradation modeling method based on EMD-SVD and fuzzy neural network (FNN) was proposed to identify and evaluate the degradation process of bearings in the whole life cycle accurately. Firstly, the vibration signals of bearings in known states were decomposed by empirical mode decomposition (EMD) to obtain the intrinsic mode functions (IMFs) containing feature information. Then, the selected key IMFs which contain the main features were decomposed by singular value decomposition (SVD). And the decomposed results were used as the training samples of FNN. At last, the output results of the tested data were normalized to the health index (HI) through learning and training of FNN, and then the performance degradation degree could be described by the distance between the test sample and the normal one. According to the case study, this modeling method could evaluate the performance degradation of bearings effectively and identify the early fault features accurately. This method also provided an important maintenance strategy for the CBM of bearings.


2018 ◽  
Vol 106 (6) ◽  
pp. 603 ◽  
Author(s):  
Bendaoud Mebarek ◽  
Mourad Keddam

In this paper, we develop a boronizing process simulation model based on fuzzy neural network (FNN) approach for estimating the thickness of the FeB and Fe2B layers. The model represents a synthesis of two artificial intelligence techniques; the fuzzy logic and the neural network. Characteristics of the fuzzy neural network approach for the modelling of boronizing process are presented in this study. In order to validate the results of our calculation model, we have used the learning base of experimental data of the powder-pack boronizing of Fe-15Cr alloy in the temperature range from 800 to 1050 °C and for a treatment time ranging from 0.5 to 12 h. The obtained results show that it is possible to estimate the influence of different process parameters. Comparing the results obtained by the artificial neural network to experimental data, the average error generated from the fuzzy neural network was 3% for the FeB layer and 3.5% for the Fe2B layer. The results obtained from the fuzzy neural network approach are in agreement with the experimental data. Finally, the utilization of fuzzy neural network approach is well adapted for the boronizing kinetics of Fe-15Cr alloy.


2010 ◽  
Vol 36 (3) ◽  
pp. 459-464 ◽  
Author(s):  
Cheng-Dong LI ◽  
Jian-Qiang YI ◽  
Yi YU ◽  
Dong-Bin ZHAO

2014 ◽  
Vol 8 (1) ◽  
pp. 916-921
Author(s):  
Yuan Yuan ◽  
Wenjun Meng ◽  
Xiaoxia Sun

To address deficiencies in the process of fault diagnosis of belt conveyor, this study uses a BP neural network algorithm combined with fuzzy theory to provide an intelligent fault diagnosis method for belt conveyor and to establish a BP neural network fault diagnosis model with a predictive function. Matlab is used to simulate the fuzzy BP neural network fault diagnosis of the belt conveyor. Results show that the fuzzy neural network can filter out unnecessary information; save time and space; and improve the fault diagnosis recognition, classification, and fault location capabilities of belt conveyor. The proposed model has high practical value for engineering.


Sign in / Sign up

Export Citation Format

Share Document