Stability and power factor improvement in a power system with simultaneous generation of steam and solar power plant

Author(s):  
Moien Mohamadi ◽  
Emad Roshandel ◽  
Sayed Mokhtar Gheasaryan ◽  
Pooya Khoshkalamyan
2021 ◽  
Vol 3 (1) ◽  
pp. 26-35
Author(s):  
Muhammad Syahwil ◽  
Nasrudin Kadir

This study aims to design and manufacture a practical module for a small-scale off-grid solar power system with a power capacity of 320Wp. This module consists of the main components of an off-grid type solar power system such as solar panels, Solar Charger Controller (SCC), batteries, inverters, ac/dc loads and power meter measuring instruments integrated in one module. The method used is laboratory research methods and literature study. The literature study method is to look for literature related to solar power plant as a support in making modules and laboratory methods, namely testing modules/ systems with certain conditions. Stages This research method includes identification of problems in the laboratory, literature study, design/layout of the PLTS module, determining the type and analysis of the capacity of solar panels, SCC, inverters and batteries, supplying materials/components, manufacturing modules, and testing modules in the laboratory. The output and benefits of this research are getting a practical module for the solar power plant system which makes it easier for students to understand the working principles of the PLTS system; also to optimize practicum activities in the laboratory. From the results of testing, measurement, and data analysis that have been carried out by the off-grid solar power plant (PLTS) module that has been made to function properly and works in accordance with the principle of the off-grid PLTS system, generating electricity according to the capacity of the solar panel, The solar charge controller works in accordance with its function to regulate charge and discharge of battery storage and the inverter is able to serve the load according to its capacity so that this module is ready to be used as a practical module in learning activities in the laboratory.


2020 ◽  
Vol 2020 (3) ◽  
pp. 30-36
Author(s):  
I.M. Buratynskyi ◽  
◽  
T.P. Nechaieva ◽  

In view of the dependence of power generation at photovoltaic solar power plants on the level of intensity of solar radiation and cloud cover, their operation creates a number of problems in the power system. This article describes the problems of operation of such power plants of non-guaranteed capacity during their parallel operation as a part of the Unified Energy System of Ukraine. One of the measures of stabilizing the operation of power plants of non-guaranteed capacity is the use of systems of electric energy storage. The article describes the conditions of electrical connection, which ensure the possibility of combined operation of a system of electric energy storage and a photovoltaic solar power plant. The article presents the developed mathematical model of the combined operation of a photovoltaic solar power plant (PSPP) and a system of electric energy storage. We consider the daily mode of recharging from a PSPP and discharging batteries into the power system in order to preserve the excess of generated electricity at the PSPP, which earlier was lost due to the restriction on inverters caused by the overload with photovoltaic power. The model enables one to identify the key parameters of batteries – power and capacity, taking into account the physical and technical features of the operation of battery storage as to the conversion efficiency, the number of working cycles and the depth of possible discharge depending on the structure of PSPP equipment and solar radiation intensity. Using the developed model, we determined the values of power, charging and discharging capacities of a lithium-ion system for storing electrical energy, when it works together with a 10 MWAC photovoltaic solar power plant at different overload factors. The article presents some results of technical and economic assessment of the combined operation of a PSPP and a lithium-ion system for storing electrical energy. The results showed an increase in the power and capacity of a storage device with increase in the overload factor of PSPP, which leads to the growth of cost of electrical energy at their combined work. At the same time, the amounts and quality of electricity supplied increase. Keywords: mathematical model, photovoltaic solar power plant, system of electric energy storage, cost of electricity, power system


2018 ◽  
Author(s):  
P. K. Verma ◽  
A. K. Vishnoi ◽  
Naveen Kumar ◽  
Arun K. Nayak ◽  
G. J. Gorade ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document