Low-speed Unmanned Vehicle Localization Based on Sensor Fusion of Low-cost Stereo Camera and IMU

Author(s):  
Wei Wang ◽  
Hu Sun ◽  
Yuqiang Jin ◽  
Minglei Fu ◽  
Kun Li ◽  
...  
Author(s):  
Yuquan Xu ◽  
Vijay John ◽  
Seiichi Mita ◽  
Hossein Tehrani ◽  
Kazuhisa Ishimaru ◽  
...  

2014 ◽  
Vol 607 ◽  
pp. 791-794 ◽  
Author(s):  
Wei Kang Tey ◽  
Che Fai Yeong ◽  
Yip Loon Seow ◽  
Eileen Lee Ming Su ◽  
Swee Ho Tang

Omnidirectional mobile robot has gained popularity among researchers. However, omnidirectional mobile robot is rarely been applied in industry field especially in the factory which is relatively more dynamic than normal research setting condition. Hence, it is very important to have a stable yet reliable feedback system to allow a more efficient and better performance controller on the robot. In order to ensure the reliability of the robot, many of the researchers use high cost solution in the feedback of the robot. For example, there are researchers use global camera as feedback. This solution has increases the cost of the robot setup fee to a relatively high amount. The setup system is also hard to modify and lack of flexibility. In this paper, a novel sensor fusion technique is proposed and the result is discussed.


Sensors ◽  
2018 ◽  
Vol 18 (10) ◽  
pp. 3270 ◽  
Author(s):  
Hao Cai ◽  
Zhaozheng Hu ◽  
Gang Huang ◽  
Dunyao Zhu ◽  
Xiaocong Su

Self-localization is a crucial task for intelligent vehicles. Existing localization methods usually require high-cost IMU (Inertial Measurement Unit) or expensive LiDAR sensors (e.g., Velodyne HDL-64E). In this paper, we propose a low-cost yet accurate localization solution by using a custom-level GPS receiver and a low-cost camera with the support of HD map. Unlike existing HD map-based methods, which usually requires unique landmarks within the sensed range, the proposed method utilizes common lane lines for vehicle localization by using Kalman filter to fuse the GPS, monocular vision, and HD map for more accurate vehicle localization. In the Kalman filter framework, the observations consist of two parts. One is the raw GPS coordinate. The other is the lateral distance between the vehicle and the lane, which is computed from the monocular camera. The HD map plays the role of providing reference position information and correlating the local lateral distance from the vision and the GPS coordinates so as to formulate a linear Kalman filter. In the prediction step, we propose using a data-driven motion model rather than a Kinematic model, which is more adaptive and flexible. The proposed method has been tested with both simulation data and real data collected in the field. The results demonstrate that the localization errors from the proposed method are less than half or even one-third of the original GPS positioning errors by using low cost sensors with HD map support. Experimental results also demonstrate that the integration of the proposed method into existing ones can greatly enhance the localization results.


2021 ◽  
Author(s):  
Cooper Heyne Minehart ◽  
Jeffrey Naber ◽  
Jason Blough ◽  
Xin Wang ◽  
Chris Glugla ◽  
...  

Author(s):  
Ainur Munira Rosli ◽  
Norlida Jamil ◽  
Ahmad Shahir Jamaludin ◽  
Mohd Nizar Muhd Razali ◽  
Ahmad Razlan Yusoff
Keyword(s):  
Low Cost ◽  

Sign in / Sign up

Export Citation Format

Share Document