lateral distance
Recently Published Documents


TOTAL DOCUMENTS

107
(FIVE YEARS 41)

H-INDEX

12
(FIVE YEARS 3)

2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Yan-Liang Shi ◽  
Nicholas A. Steinmetz ◽  
Tirin Moore ◽  
Kwabena Boahen ◽  
Tatiana A. Engel

AbstractCorrelated activity fluctuations in the neocortex influence sensory responses and behavior. Neural correlations reflect anatomical connectivity but also change dynamically with cognitive states such as attention. Yet, the network mechanisms defining the population structure of correlations remain unknown. We measured correlations within columns in the visual cortex. We show that the magnitude of correlations, their attentional modulation, and dependence on lateral distance are explained by columnar On-Off dynamics, which are synchronous activity fluctuations reflecting cortical state. We developed a network model in which the On-Off dynamics propagate across nearby columns generating spatial correlations with the extent controlled by attentional inputs. This mechanism, unlike previous proposals, predicts spatially non-uniform changes in correlations during attention. We confirm this prediction in our columnar recordings by showing that in superficial layers the largest changes in correlations occur at intermediate lateral distances. Our results reveal how spatially structured patterns of correlated variability emerge through interactions of cortical state dynamics, anatomical connectivity, and attention.


Author(s):  
N Jayarathne ◽  
D Ranmuthugala ◽  
Z Leong ◽  
J Fei

To date, most of the hydrodynamic interaction studies between a tug and a ship during ship assist manoeuvers have been carried out using model scale investigations. It is however difficult to establish how well results from these studies represent full scale interaction behaviour. This is further exacerbated by the lack of proven methodologies to non- dimensionalise the relative distances between the two vessels, enabling the comparison of model and full scale interaction effect data, as well as between vessels of dissimilar size ratios. This study investigates a suitable correlation technique to non-dimensionalise the lateral distance between vessels of dissimilar sizes, and a scaling option for interaction effect studies. It focuses on the interaction effects on a tug operating around the forward shoulder of a tanker at different lateral distances during ship assist operations. The findings and the non-dimensioning method presented in this paper enable the interaction effects determined for a given ship-to-tug ratio to be used to predict the safe operational distances for other ship-to-tug ratios.


2021 ◽  
Vol 157 (A4) ◽  
Author(s):  
H M WANG ◽  
L WANG ◽  
L Q TU ◽  
C H ZHAO

ellipsoids are taken as an example. By coupling the motion equations of the two bodies and the fluid flow equations, the interaction forces and moments are calculated, and the tracks are predicted. The numerical results for the model fixed motion (only free to surge) at constant speed are compared with those published in literature for the validation of the method proposed in this paper, and good agreement is found. On this basis, more complicated multi-degree of freedom motions in surge, sway and yaw directions induced by the interaction effects are simulated. By systematically comparing and analyzing the numerical results obtained at different speeds, lateral distances and body sizes, the influences of speed and lateral distance and body size The sway and yaw motion will be induced additionally due to the interaction effects when two encountering bodies sail in close proximity, which may lead to the collision accident. In the present study, two on the hydrodynamic forces are elucidated. 


2021 ◽  
Vol 11 (22) ◽  
pp. 10634
Author(s):  
Abdullah Aldughaiyem ◽  
Yasser Bin Salamah ◽  
Irfan Ahmad

In recent years, control design for unmanned systems, especially a tractor–trailer system, has gained popularity among researchers. The emergence of such interest is caused by the potential reduction in cost and shortage of number of workers and labors. Two industries will benefit from the advancements of these types of systems: agriculture and cargo. By using the unmanned tractor–trailer system, harvesting and cultivating plants will become a safe and easy task. It will also cause a reduction in cost which in turn reduces the price on the end consumers. On the other hand, by using the unmanned tractor–trailer system in the cargo industry, shipping cost and time for the item delivery will be reduced. The work presented in this paper focuses on the development of a path tracking and a cascaded controller to control a tractor–trailer in reverse motion. The path tracking controller utilizes the Frenet–Serret frame to control the kinematics of the tractor–trailer system on a desired path, while the cascade controller’s main objective is to stabilize the system and to perform commands issued by the path tracker. The controlled parameters in this proposed design are the lateral distance to a path, trailer’s heading angel, articulated angel, and articulated angle’s rate. The main goal of such controller is to follow a path while the tractor–trailer system is moving in reverse and controlling the stability of the articulated vehicle to prevent the occurrence of a jackknife incident (uncontrolled state). The proposed controller has been tested in a different scenario where a successful implementation has been shown.


2021 ◽  
Author(s):  
Muhammad Ikhsan Akbar ◽  
Jerry Tobing ◽  
Mohd Zarir Bin Musa ◽  
Irshad Fajar ◽  
Fajar Ardiansyah

Abstracts Conductor setting depth is critical to provide structural support for next drilling sections. The shoe strength must suffice for drilling ahead and avoid any washout and unstable zone. The objective is to design and run conductor smoothly in regards to engineering and operation aspect. Multidisciplinary approach including geotechnical, drilling engineering, and structure, was implemented during planning strategy. The pre-determined conductor setting depth was defined on the maximum mud weight to be used during drilling surface hole section in accordance to the formation strength below the conductor with the purpose of not inducing losses to the formation. Lateral distance between conductor and platform jacket pile was also analyzed to secure the jacket integrity. Anti-collision analysis was performed to prevent collision due to the existence of production well in same platform. Conductor pipe size and specification with some feature was defined to withstand under anticipated load and environment. To determine the way to achieve target depth and the suitability of hammer type, drivability analysis was performed with various anticipated condition. Considering shallow refusal depth, drill and drive was required to reduce shaft friction of soil. Another environmental challenge arise during conductor operation was unable to contain fluid and cutting returns from clean-out process causing return to cover part of the production platform facility. Some of technology were planned to mitigate this challenge. By having comprehensive conductor design, the conductor pipe in all four wells drilled has been successfully installed without any problem on platform jacket integrity and subsequent drilling section. This approach also enabled to efficiency of conductor installation where the number of clean-out and driving run could be reduced. The overflow return challenge could be fully contained by utilizing selfdesigned equipment. The overall operation days of conductor has shown improvement with 1.02 saving days on the last well which equivalent to amount of cost saving around USD 203,500.


Author(s):  
O. J. Airen ◽  
D. A. Babaiwa

2D Electrical Resistivity (ER) and Instantaneous Potential (IP) geophysical techniques were used at Eziama village in Abia state of Nigeria to investigate possible Pb-Zn mineralization. The dipole-dipole electrode configuration was employed for data acquisition and Earth Imager software was used for inversion of the acquired data. The analysis of the result of the study showed the presence of the Pb-Zn ore along traverses 1, 2 and 3 while traverses 4 and 5 appear barren. Along traverse 1, the mineralized zone falls within the fractured basement and is characterized by low resistivity (about 316 – 5623 ohm-m) and high chargeability (33.2 – 128 ns) at lateral distance of 73 – 103 m. On traverse two, the ore body was identified at lateral distance of about -18 to 53 m as delineated on the IP structure with resistivity and chargeability of the anomalous zone ranging from 4.6 – 677 ohm-m and 41.8 – 142 ns respectively at depth of about 21.4 m while on traverse three, two ore bodies labeled a, a’ and b, b’ on the ER and IP cross-sections were delineated at lateral distance of about -130 to -93 m and 78 to 98 m respectively with depth to the top of the suspected ore bodies ranging from about 7.1 m for body ‘a’ and about 14.3 m for ‘a’. Traverses four and five however showed no prospect for Pb-Zn mineralization. The result of this investigation has once again demonstrated the usefulness of combined electrical resistivity and induced polarization techniques in solid mineral exploration.


2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Ehsan Ramezani-Khansari ◽  
Masoud Tabibi ◽  
Fereidoon Moghadas Nejad

Lane change (LC) is one of the main maneuvers in traffic flow. Many studies have estimated LC duration directly by using lane-based data. The current research presents an estimate of LC duration for overtaking maneuver in nonlane-based traffic flow. In this paper, the LC duration is estimated implicitly by modeling lateral speed and applying the length of required lateral movement to complete the LC maneuver. In lateral speed modeling, the local linear model tree is applied which consists of three variables: the initial lateral distance, longitudinal speed, and time to collision (TTC), which itself is a function of the relative speed of follower and the distance between the two vehicles. The initial lateral distance is the relative transverse distance from which the following vehicle initializes the LC. The range of lateral speed was estimated between 0.5 and 5 km/h, which resulted in the LC duration between 2.5 and 24 sec. The results indicate that the lateral and longitudinal speed would be inversely related, while the lateral speed and the initial transverse distance as well as TTC would be directly related. The findings also indicate that TTC can be assumed as the most important factor affecting lateral speed. TTC at 8 sec can be considered as the threshold for its effect on the LC duration since at longer TTCs, and the lateral speed has remained almost constant. When TTC is longer than 8 sec, it would not affect the LC duration.


2021 ◽  
Vol 35 (23) ◽  
Author(s):  
WenHuan Ai ◽  
JiuNiu Zhu ◽  
WenShan Duan ◽  
DaWei Liu

Based on a density gradient model proposed recently by Imran and Khan, a new heterogeneous traffic flow model considering time and lateral distance is proposed. The type and stability of the equilibrium solution of the model are discussed by using the differential equation theory, and the global distribution structure of the trajectory in the phase plane is analyzed. In addition, the density wave stability conditions and saddle-node bifurcation conditions of the model are studied, and the solitary wave solutions of the KdV equation in the metastable region are derived by using the reduced perturbation method. The numerical results show that the new model cannot only reproduce the spatiotemporal oscillation phenomenon when walking and stopping, but also describe the sudden change behavior of traffic near the critical point of saddle-node bifurcation. It is shown that the model can reproduce some complex traffic phenomena qualitatively.


2021 ◽  
pp. 1-30
Author(s):  
A. Guo ◽  
Z. Zhou ◽  
R. Wang ◽  
X. Zhao ◽  
X. Zhu

Abstract The full-wing solar-powered UAV has a large aspect ratio, special configuration, and excellent aerodynamic performance. This UAV converts solar energy into electrical energy for level flight and storage to improve endurance performance. The UAV only uses a differential throttle for lateral control, and the insufficient control capability during crosswind landing results in a large lateral distance bias and leads to multiple landing failures. This paper analyzes 11 landing failures and finds that a large lateral distance bias at the beginning of the approach and the coupling of base and differential throttle control is the main reason for multiple landing failures. To improve the landing performance, a heading angle-based vector field (VF) method is applied to the straight-line and orbit paths following and two novel 3D Dubins landing paths are proposed to reduce the initial lateral control bias. The results show that the straight-line path simulation exhibits similar phenomenon with the practical failure; the single helical path has the highest lateral control accuracy; the left-arc to left-arc (L-L) path avoids the saturation of the differential throttle; and both paths effectively improve the probability of successful landing.


Sign in / Sign up

Export Citation Format

Share Document