Integrating Motion and Illumination Models for 3D Tracking

Author(s):  
A.K. Roy-Chowdhury ◽  
Yilei Xu
Particles ◽  
2021 ◽  
Vol 4 (3) ◽  
pp. 343-353
Author(s):  
Fernando Domingues Amaro ◽  
Elisabetta Baracchini ◽  
Luigi Benussi ◽  
Stefano Bianco ◽  
Cesidio Capoccia ◽  
...  

The CYGNO project aims at developing a high resolution Time Projection Chamber with optical readout for directional dark matter searches and solar neutrino spectroscopy. Peculiar CYGNO’s features are the 3D tracking capability provided by the combination of photomultipliers and scientific CMOS camera signals, combined with a helium-fluorine-based gas mixture at atmospheric pressure amplified by gas electron multipliers structures. In this paper, the performances achieved with CYGNO prototypes and the prospects for the upcoming underground installation at Laboratori Nazionali del Gran Sasso of a 50-L detector in fall 2021 will be discussed, together with the plans for a 1-m3 experiment. The synergy with the ERC consolidator, grant project INITIUM, aimed at realising negative ion drift operation within the CYGNO 3D optical approach, will be further illustrated.


Author(s):  
Thomas Morwald ◽  
Marek Kopicki ◽  
Rustam Stolkin ◽  
Jeremy Wyatt ◽  
Sebastian Zurek ◽  
...  
Keyword(s):  

Nano Letters ◽  
2013 ◽  
Vol 13 (3) ◽  
pp. 980-986 ◽  
Author(s):  
Bram van den Broek ◽  
Brian Ashcroft ◽  
Tjerk H. Oosterkamp ◽  
John van Noort

2021 ◽  
Vol 7 (6) ◽  
pp. eabe3902
Author(s):  
Martin Rieu ◽  
Thibault Vieille ◽  
Gaël Radou ◽  
Raphaël Jeanneret ◽  
Nadia Ruiz-Gutierrez ◽  
...  

While crucial for force spectroscopists and microbiologists, three-dimensional (3D) particle tracking suffers from either poor precision, complex calibration, or the need of expensive hardware, preventing its massive adoption. We introduce a new technique, based on a simple piece of cardboard inserted in the objective focal plane, that enables simple 3D tracking of dilute microparticles while offering subnanometer frame-to-frame precision in all directions. Its linearity alleviates calibration procedures, while the interferometric pattern enhances precision. We illustrate its utility in single-molecule force spectroscopy and single-algae motility analysis. As with any technique based on back focal plane engineering, it may be directly embedded in a commercial objective, providing a means to convert any preexisting optical setup in a 3D tracking system. Thanks to its precision, its simplicity, and its versatility, we envision that the technique has the potential to enhance the spreading of high-precision and high-throughput 3D tracking.


2008 ◽  
Vol 9 (3) ◽  
pp. 296-300 ◽  
Author(s):  
Michael A. Finn ◽  
Daniel R. Fassett ◽  
Todd D. Mccall ◽  
Randy Clark ◽  
Andrew T. Dailey ◽  
...  

Object Stabilization with rigid screw/rod fixation is the treatment of choice for craniocervical disorders requiring operative stabilization. The authors compare the relative immediate stiffness for occipital plate fixation in concordance with transarticular screw fixation (TASF), C-1 lateral mass and C-2 pars screw (C1L-C2P), and C-1 lateral mass and C-2 laminar screw (C1L-C2L) constructs, with and without a cross-link. Methods Ten intact human cadaveric spines (Oc–C4) were prepared and mounted in a 7-axis spine simulator. Each specimen was precycled and then tested in the intact state for flexion/extension, lateral bending, and axial rotation. Motion was tracked using the OptoTRAK 3D tracking system. The specimens were then destabilized and instrumented with an occipital plate and TASF. The spine was tested with and without the addition of a cross-link. The C1L-C2P and C1L-C2L constructs were similarly tested. Results All constructs demonstrated a significant increase in stiffness after instrumentation. The C1L-C2P construct was equivalent to the TASF in all moments. The C1L-C2L was significantly weaker than the C1L-C2P construct in all moments and significantly weaker than the TASF in lateral bending. The addition of a cross-link made no difference in the stiffness of any construct. Conclusions All constructs provide significant immediate stability in the destabilized occipitocervical junction. Although the C1L-C2P construct performed best overall, the TASF was similar, and either one can be recommended. Decreased stiffness of the C1L-C2L construct might affect the success of clinical fusion. This construct should be reserved for cases in which anatomy precludes the use of the other two.


Sign in / Sign up

Export Citation Format

Share Document