scholarly journals More Photos are All You Need: Semi-Supervised Learning for Fine-Grained Sketch Based Image Retrieval

Author(s):  
Ayan Kumar Bhunia ◽  
Pinaki Nath Chowdhury ◽  
Aneeshan Sain ◽  
Yongxin Yang ◽  
Tao Xiang ◽  
...  
2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Haopeng Lei ◽  
Simin Chen ◽  
Mingwen Wang ◽  
Xiangjian He ◽  
Wenjing Jia ◽  
...  

Due to the rise of e-commerce platforms, online shopping has become a trend. However, the current mainstream retrieval methods are still limited to using text or exemplar images as input. For huge commodity databases, it remains a long-standing unsolved problem for users to find the interested products quickly. Different from the traditional text-based and exemplar-based image retrieval techniques, sketch-based image retrieval (SBIR) provides a more intuitive and natural way for users to specify their search need. Due to the large cross-domain discrepancy between the free-hand sketch and fashion images, retrieving fashion images by sketches is a significantly challenging task. In this work, we propose a new algorithm for sketch-based fashion image retrieval based on cross-domain transformation. In our approach, the sketch and photo are first transformed into the same domain. Then, the sketch domain similarity and the photo domain similarity are calculated, respectively, and fused to improve the retrieval accuracy of fashion images. Moreover, the existing fashion image datasets mostly contain photos only and rarely contain the sketch-photo pairs. Thus, we contribute a fine-grained sketch-based fashion image retrieval dataset, which includes 36,074 sketch-photo pairs. Specifically, when retrieving on our Fashion Image dataset, the accuracy of our model ranks the correct match at the top-1 which is 96.6%, 92.1%, 91.0%, and 90.5% for clothes, pants, skirts, and shoes, respectively. Extensive experiments conducted on our dataset and two fine-grained instance-level datasets, i.e., QMUL-shoes and QMUL-chairs, show that our model has achieved a better performance than other existing methods.


2021 ◽  
Author(s):  
Cu Viet Dung ◽  
An Hong Son ◽  
Nguyen Huu Quynh ◽  
Ngo Quoc Tao ◽  
Dao Thi Thuy Quynh

Author(s):  
Ayan Kumar Bhunia ◽  
Yongxin Yang ◽  
Timothy M. Hospedales ◽  
Tao Xiang ◽  
Yi-Zhe Song
Keyword(s):  

2019 ◽  
Vol 33 (19) ◽  
pp. 1950213 ◽  
Author(s):  
Vibhav Prakash Singh ◽  
Rajeev Srivastava ◽  
Yadunath Pathak ◽  
Shailendra Tiwari ◽  
Kuldeep Kaur

Content-based image retrieval (CBIR) system generally retrieves images based on the matching of the query image from all the images of the database. This exhaustive matching and searching slow down the image retrieval process. In this paper, a fast and effective CBIR system is proposed which uses supervised learning-based image management and retrieval techniques. It utilizes machine learning approaches as a prior step for speeding up image retrieval in the large database. For the implementation of this, first, we extract statistical moments and the orthogonal-combination of local binary patterns (OC-LBP)-based computationally light weighted color and texture features. Further, using some ground truth annotation of images, we have trained the multi-class support vector machine (SVM) classifier. This classifier works as a manager and categorizes the remaining images into different libraries. However, at the query time, the same features are extracted and fed to the SVM classifier. SVM detects the class of query and searching is narrowed down to the corresponding library. This supervised model with weighted Euclidean Distance (ED) filters out maximum irrelevant images and speeds up the searching time. This work is evaluated and compared with the conventional model of the CBIR system on two benchmark databases, and it is found that the proposed work is significantly encouraging in terms of retrieval accuracy and response time for the same set of used features.


2019 ◽  
Vol 92 ◽  
pp. 156-164 ◽  
Author(s):  
Qing Ma ◽  
Cong Bai ◽  
Jinglin Zhang ◽  
Zhi Liu ◽  
Shengyong Chen

2010 ◽  
Vol 108-111 ◽  
pp. 201-206 ◽  
Author(s):  
Hui Liu ◽  
Cai Ming Zhang ◽  
Hua Han

Among various content-based image retrieval (CBIR) methods based on active learning, support vector machine(SVM) active learning is popular for its application to relevance feedback in CBIR. However, the regular SVM active learning has two main drawbacks when used for relevance feedback. Furthermore, it’s difficult to collect vast amounts of labeled data and easy for unlabeled data to image examples. Therefore, it is necessary to define conditions to utilize the unlabeled examples enough. This paper presented a method of medical images retrieval about semi-supervised learning based on SVM for relevance feedback in CBIR. This paper also introduced an algorithm about defining two learners, both learners are re-trained after every relevance feedback round, and then each of them gives every image in a rank. Experiments show that using semi-supervised learning idea in CBIR is beneficial, and the proposed method achieves better performance than some existing methods.


Sign in / Sign up

Export Citation Format

Share Document