Finite-time Combination Projective Synchronization for Memristive Systems

Author(s):  
Yibo Wang ◽  
Fuhong Min ◽  
Hongliang Zheng
IEEE Access ◽  
2021 ◽  
pp. 1-1
Author(s):  
Meng Hui ◽  
Jiahuang Zhang ◽  
Jiao Zhang ◽  
Herbert Ho-Ching Iu ◽  
Rui Yao ◽  
...  

2021 ◽  
Vol 8 (3) ◽  
pp. 486-498
Author(s):  
N. Jayanthi ◽  
◽  
R. Santhakumari ◽  

This paper deals with the problem of finite-time projective synchronization for a class of neutral-type complex-valued neural networks (CVNNs) with time-varying delays. A simple state feedback control protocol is developed such that slave CVNNs can be projective synchronized with the master system in finite time. By employing inequalities technique and designing new Lyapunov--Krasovskii functionals, various novel and easily verifiable conditions are obtained to ensure the finite-time projective synchronization. It is found that the settling time can be explicitly calculated for the neutral-type CVNNs. Finally, two numerical simulation results are demonstrated to validate the theoretical results of this paper.


2019 ◽  
Vol 531 ◽  
pp. 121788 ◽  
Author(s):  
Xiaoli Qin ◽  
Cong Wang ◽  
Lixiang Li ◽  
Haipeng Peng ◽  
Yixian Yang ◽  
...  

Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-27
Author(s):  
Meng Hui ◽  
Chen Wei ◽  
Jiao Zhang ◽  
Herbert Ho-Ching Iu ◽  
Ni Luo ◽  
...  

This paper is concerned with the finite-time projective synchronization problem of fractional-order memristive neural networks (FMNNs) with mixed time-varying delays. Firstly, under the frame of fractional-order differential inclusion and the set-valued map, several criteria are derived to ensure finite-time projective synchronization of FMNNs. Meanwhile, three properties are established to deal with different forms of the finite-time fractional differential inequation, which greatly extend some results on estimation of settling time of FMNNs. In addition to the traditional Lyapunov function with 1-norm form in Theorem 1, a more general and flexible Lyapunov function based on p-norm is constructed in Theorem 2 to analyze the finite-time projective synchronization problem, and the estimation of settling time has been verified less conservative than previous results. Finally, numerical examples are provided to demonstrate the effectiveness of the derived theoretical results.


Sign in / Sign up

Export Citation Format

Share Document