The Application of Nonstandard Support Vector Machine in Tool Condition Monitoring System

Author(s):  
J. Sun ◽  
G.S. Hong ◽  
M. Rahman ◽  
Y.S. Wong
Author(s):  
Guo F Wang ◽  
Qing L Xie ◽  
Yan C Zhang

A tool condition monitoring system based on support vector machine and differential evolution is proposed in this article. In this system, support vector machine is used to realize the mapping between the extracted features and the tool wear states. At the same time, two important parameters of the support vector machine which are called penalty parameter C and kernel parameter [Formula: see text] are optimized simultaneously based on differential evolution algorithm. In order to verify the effectiveness of the proposed system, a multi-tooth milling experiment of titanium alloy was carried out. Cutting force signals related to different tool wear states were collected, and several time domain and frequency domain features were extracted to depict the dynamic characteristics of the milling process. Based on the extracted features, the differential evolution-support vector machine classifier is constructed to realize the tool wear classification. Moreover, to make a comparison, empirical selection method and four kinds of grid search algorithms are also used to select the support vector machine parameters. At the same time, cross validation is utilized to improve the robustness of the classifier evaluation. The results of analysis and comparisons show that the classification accuracy of differential evolution-support vector machine is higher than empirical selection-support vector machine. Moreover, the time consumption of differential evolution-support vector machine classifier is 5 to 12 times less than that of grid search-support vector machine.


Author(s):  
V.I. GOLOVIN ◽  
S.Yu. RADCHENKO

One of the most important tasks of serial and mass production is to maintain the continuity of the technological process in order to reduce equipment downtime and, as a result, the cost of production. One of the systems is the tool condition monitoring system. However, the solutions used today are complex software and hardware systems that are not available for most medium and small productions. The article proposes a system based on a comparative analysis of the applied tool with reference instances. The results of the analysis are sent to the decision-making system, which determines the feasibility of further use of the cutting tool for subsequent machining. An example of an experimental study of milling processing is given. The results obtained show the possibility and rationality of using this model to predict the state of the instrument.


2014 ◽  
Vol 255 ◽  
pp. 121-134 ◽  
Author(s):  
Qun Ren ◽  
Marek Balazinski ◽  
Luc Baron ◽  
Krzysztof Jemielniak ◽  
Ruxandra Botez ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document