Detection of Structural Similarity for Multimodal Microscopic Image Registration

Author(s):  
Guohua Lv ◽  
Shyh Wei Teng ◽  
Guojun Lu ◽  
Martin Lackmann
2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A855-A856
Author(s):  
Abu Bakr Azam ◽  
Yu Qing Chang ◽  
Matthew Leong Tze Ker ◽  
Denise Goh ◽  
Jeffrey Chun Tatt Lim ◽  
...  

BackgroundExamining Hematoxylin & Eosin (H&E) images using brightfield microscopes is the gold standard of pathological diagnosis as it is an inexpensive method and provides basic information of tumors and other nuclei. Complementary to H&E-stained images, Immunohistochemical (IHC) images are crucial in identifying tumor subtypes and efficacy of treatment response. Other newer technologies such as Multiplex Immunofluorescence (mIF) in particular, identifies cells such as tumor infiltrating lymphocytes (TILs) which can be augmented via immunotherapy, an evolving form of cancer treatment. Immunotherapy helps in the manipulation of the host immune response and overcome limitations like the PD-1 (Programmed Cell Death-1) receptor induced restrictions on TIL production. If the same biopsy specimen is used for inspection, the higher order features in H&E images can be used to obtain information usually found in mIF images using Convolutional Neural Networks (CNNs), widely used in object detection and image segmentation tasks.MethodsAs shown in (figure 1), firstly, a novel optical flow-based image registration paradigm is prepared to co-register H&E and mIF image pairs, aided by adaptive color thresholding and automated color clustering. Secondly, generative adversarial networks (GANs) are adapted to predict TIL (CD3, CD45) regions. For this purpose, a unique dataset is ideated and used in which a given single channel mIF image, e.g., a CD3 channel mIF image is superimposed on the corresponding H&E image. Primarily, the Pix2Pix GAN model is used to predict CD3 and/or CD45 regions.ResultsThe intensity-based image registration workflow is fast and fully compatible with the given dataset, with an increase in evaluation metric scores after alignment (table 1). Furthermore, this study would be the first implementation of optical flow as the registration algorithm for pathological images. Next, the use of the special dataset not only reduces penalization during the training of the Pix2Pix model, but also helped in gaining repeatable results with high scores in metrics like structural similarity index measure and peak-signal to noise ratio, with minimal effects on location accuracy (table 2 and table 3).ConclusionsThis multi-modal pathological image transformation study could potentially reduce dependence on mIF and IHC images for TILs scoring, reducing the amount of tissue and cost needed for examination, as its information is derived directly from inexpensive H&E images automatically – ultimately develop into a pathologist-assisted tool for TILs scoring. This would be highly beneficial in facilities where resources are relatively limited.Ethics ApprovalThe Agency of Science, Technology and Research, Singapore, provided approval for the use of control tissue materials in this study IRB: 2020 112Abstract 818 Figure 1Proposed workflowAbstract 818 Table 1Image registration metricsAbstract 818 Table 2CD3 negative regions examplesAbstract 818 Table 3CD3 positive regions examples


2017 ◽  
Vol 14 (4) ◽  
pp. 172988141771705 ◽  
Author(s):  
Jichao Jiao ◽  
Wenyi Li ◽  
Zhongliang Deng ◽  
Qasim Ali Arain

In order to assess the performance of multisensor image registration algorithms that are used in the multirobot information fusion, we propose a model based on structural similarity whose name is vision registration assessment model. First of all, this article introduces a new image concept named superimposed image for testing subjective and objective assessment methods. Therefore, we assess the superimposed image but not the registered image, which is different from previous image registration assessment methods that usually use reference and sensed images. Then, we calculate eight assessment indicators from different aspects for superimposed images. After that, vision registration assessment model fuses the eight indicators using canonical correlation analysis, which is used for evaluating the quality of an image registration results in different aspects. Finally, three kinds of images which include optical images, infrared images, and SAR images are used to test vision registration assessment model. After evaluating three state-of-the-art image registration methods, experiments indict that the proposed structural similarity-motivated model achieved almost same evaluation results with that of the human object with the consistency rate of 98.3%, which shows that vision registration assessment model is efficient and robust for evaluating multisensor image registration algorithms. Moreover, vision registration assessment model is independent of the emotional factors and outside environment, which is different from the human.


Author(s):  
G. Kasnic ◽  
S. E. Stewart ◽  
C. Urbanski

We have reported the maturation of an intracisternal A-type particle in murine plasma cell tumor cultures and three human tumor cell cultures (rhabdomyosarcoma, lung adenocarcinoma, and osteogenic sarcoma) after IUDR-DMSO activation. In all of these studies the A-type particle seems to develop into a form with an electron dense nucleoid, presumably mature, which is also intracisternal. A similar intracisternal A-type particle has been described in leukemic guinea pigs. Although no biological activity has yet been demonstrated for these particles, on morphologic grounds, and by the manner in which they develop within the cell, they may represent members of the same family of viruses.


Author(s):  
M. Boublik ◽  
R.M. Wydro ◽  
W. Hellmann ◽  
F. Jenkins

Ribosomes are ribonucleoprotein particles necessary for processing the genetic information of mRNA into proteins. Analogy in composition and function of ribosomes from diverse species, established by biochemical and biological assays, implies their structural similarity. Direct evidence obtained by electron microscopy seems to be of increasing relevance in understanding the structure of ribosomes and the mechanism of their role in protein synthesis.The extent of the structural homology between prokaryotic and eukaryotic ribosomes has been studied on ribosomes of Escherichia coli (E.c.) and Artemia salina (A.s.). Despite the established differences in size and in the amount and proportion of ribosomal proteins and RNAs both types of ribosomes show an overall similarity. The monosomes (stained with 0.5% aqueous uranyl acetate and deposited on a fine carbon support) appear in the electron micrographs as round particles with a diameter of approximately 225Å for the 70S E.c. (Fig. 1) and 260Å for the 80S A.s. monosome (Fig. 2).


Sign in / Sign up

Export Citation Format

Share Document