Fully Convolutional Neural Network with Relation Aware Context Information for Image Parsing

Author(s):  
Basim Azam ◽  
Ranju Mandal ◽  
Brijesh Verma



2021 ◽  
pp. 1-13
Author(s):  
Hongshi Ou ◽  
Jifeng Sun

In the deep learning-based video action recognitio, the function of the neural network is to acquire spatial information, motion information, and the associated information of the above two kinds of information over an uneven time span. This paper puts forward a network extracting video sequence semantic information based on deep integration of local Spatial-Temporal information. The network uses 2D Convolutional Neural Network (2DCNN) and Multi Spatial-Temporal scale 3D Convolutional Neural Network (MST_3DCNN) respectively to extract spatial information and motion information. Spatial information and motion information of the same time quantum receive 3D convolutional integration to generate the temporary Spatial-Temporal information of a certain moment. Then, the Spatial-Temporal information of multiple single moments enters Temporal Pyramid Net (TPN) to generate the local Spatial-Temporal information of multiple time scales. Finally, bidirectional recurrent neutral network is used to act on the Spatial-Temporal information of all parts so as to acquire the context information spanning the length of the entire video, which endows the network with video context information extraction capability. Through the experiments on the three video action recognitio common experimental data sets UCF101, UCF11, UCFSports, the Spatial-Temporal information deep fusion network proposed in this paper has a high correct recognition rate in the task of video action recognitio.



2018 ◽  
Vol 295 ◽  
pp. 46-58 ◽  
Author(s):  
Yanna Wang ◽  
Cunzhao Shi ◽  
Baihua Xiao ◽  
Chunheng Wang ◽  
Chengzuo Qi


2019 ◽  
Vol 11 (3) ◽  
pp. 272 ◽  
Author(s):  
Nan Mo ◽  
Li Yan ◽  
Ruixi Zhu ◽  
Hong Xie

In this paper, the problem of multi-scale geospatial object detection in High Resolution Remote Sensing Images (HRRSI) is tackled. The different flight heights, shooting angles and sizes of geographic objects in the HRRSI lead to large scale variance in geographic objects. The inappropriate anchor size to propose the objects and the indiscriminative ability of features for describing the objects are the main causes of missing detection and false detection in multi-scale geographic object detection. To address these challenges, we propose a class-specific anchor based and context-guided multi-class object detection method with a convolutional neural network (CNN), which can be divided into two parts: a class-specific anchor based region proposal network (RPN) and a discriminative feature with a context information classification network. A class-specific anchor block providing better initial values for RPN is proposed to generate the anchor of the most suitable scale for each category in order to increase the recall ratio. Meanwhile, we proposed to incorporate the context information into the original convolutional feature to improve the discriminative ability of the features and increase classification accuracy. Considering the quality of samples for classification, the soft filter is proposed to select effective boxes to improve the diversity of the samples for the classifier and avoid missing or false detection to some extent. We also introduced the focal loss in order to improve the classifier in classifying the hard samples. The proposed method is tested on a benchmark dataset of ten classes to prove the superiority. The proposed method outperforms some state-of-the-art methods with a mean average precision (mAP) of 90.4% and better detects the multi-scale objects, especially when objects show a minor shape change.



2020 ◽  
Author(s):  
S Kashin ◽  
D Zavyalov ◽  
A Rusakov ◽  
V Khryashchev ◽  
A Lebedev


2018 ◽  
Vol 2018 (9) ◽  
pp. 202-1-202-6 ◽  
Author(s):  
Edward T. Scott ◽  
Sheila S. Hemami


2020 ◽  
Vol 2020 (10) ◽  
pp. 181-1-181-7
Author(s):  
Takahiro Kudo ◽  
Takanori Fujisawa ◽  
Takuro Yamaguchi ◽  
Masaaki Ikehara

Image deconvolution has been an important issue recently. It has two kinds of approaches: non-blind and blind. Non-blind deconvolution is a classic problem of image deblurring, which assumes that the PSF is known and does not change universally in space. Recently, Convolutional Neural Network (CNN) has been used for non-blind deconvolution. Though CNNs can deal with complex changes for unknown images, some CNN-based conventional methods can only handle small PSFs and does not consider the use of large PSFs in the real world. In this paper we propose a non-blind deconvolution framework based on a CNN that can remove large scale ringing in a deblurred image. Our method has three key points. The first is that our network architecture is able to preserve both large and small features in the image. The second is that the training dataset is created to preserve the details. The third is that we extend the images to minimize the effects of large ringing on the image borders. In our experiments, we used three kinds of large PSFs and were able to observe high-precision results from our method both quantitatively and qualitatively.



2018 ◽  
Vol 2018 (10) ◽  
pp. 338-1-338-6
Author(s):  
Patrick Martell ◽  
Vijayan Asari


Author(s):  
Yao Yang ◽  
Yuanjiang Hu ◽  
Lingling Chen ◽  
Xiaoman Liu ◽  
Na Qin ◽  
...  


Author(s):  
Haitao Ma ◽  
Shihong Yue ◽  
Jian Lu ◽  
Sidolla Yem ◽  
Huaxiang Wang


Sign in / Sign up

Export Citation Format

Share Document