A method of inverse scattering problem solution for penetrable objects using back-scattering data

Author(s):  
Zinoviy Nazarchuk ◽  
Rostyslav Hryniv ◽  
Mazen Shahin ◽  
Andriy Synyavskyy
1986 ◽  
Vol 01 (07) ◽  
pp. 449-454 ◽  
Author(s):  
V.M. MUZAFAROV

We develop a consistent approach to an inverse scattering problem for the Schrodinger equation with nonlocal potentials. The main result presented in this paper is that for the two-body scattering data, given the problem of reconstructing both the family of phase equivalent two-body wavefunctions and the corresponding family of phase equivalent half-off-shell t-matrices, is reduced to solving a regular integral equation. This equation may be regarded as a generalization of the Gel’fand-Levitan equation.


2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Jiyu Sun ◽  
Yuhui Han

Recently, a new method, called the extended sampling method (ESM), was proposed for the inverse scattering problems. Similar to the classical linear sampling method (LSM), the ESM is simple to implement and fast. Compared to the LSM which uses full-aperture scattering data, the ESM only uses the scattering data of one incident wave. In this paper, we generalize the ESM for the inverse acoustic source problems. We show that the indicator function of ESM, which is defined using the approximated solutions of some linear ill-posed integral equations, is small when the support of the source is contained in the sampling disc and is large when the source is outside. This behavior is similar to the ESM for the inverse scattering problem. Numerical examples are presented to show the effectiveness of the method.


2017 ◽  
Vol 25 (6) ◽  
Author(s):  
Hidayat M. Huseynov ◽  
Agil K. Khanmamedov ◽  
Rza I. Aleskerov

AbstractThis paper investigates the inverse scattering problem for a discrete Dirac system on the entire line with coefficients that stabilize to zero in one direction. We develop an algorithm for solving the inverse problem of reconstruction of coefficients. We derive a necessary and a sufficient condition on the scattering data so that the inverse problem is uniquely solvable.


Mathematics ◽  
2022 ◽  
Vol 10 (2) ◽  
pp. 216
Author(s):  
Andreas Tataris ◽  
Tristan van Leeuwen

We study the inverse scattering problem for a Schrödinger operator related to a static wave operator with variable velocity, using the GLM (Gelfand–Levitan–Marchenko) integral equation. We assume to have noisy scattering data, and we derive a stability estimate for the error of the solution of the GLM integral equation by showing the invertibility of the GLM operator between suitable function spaces. To regularise the problem, we formulate a variational total least squares problem, and we show that, under certain regularity assumptions, the optimisation problem admits minimisers. Finally, we compute numerically the regularised solution of the GLM equation using the total least squares method in a discrete sense.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Konstantin V. Dmitriev ◽  
Olga D. Rumyantseva

Abstract Research presented in this paper was initiated by the publication [A. D. Agaltsov and R. G. Novikov, Examples of solving the inverse scattering problem and the equations of the Veselov–Novikov hierarchy from the scattering data of point potentials, Russian Math. Surveys 74 (2019), 3, 373–386] and is based on its results. Two sets of the complex monopole scattering coefficients are distinguished among the possible values of these coefficients for nonabsorbing inhomogeneities. These sets differ in phases of the scattering coefficients. In order to analyze the features and possibilities of reconstructing the inhomogeneities of both sets, on the one hand, the inverse problem is solved for each given value of the monopole scattering coefficient using the Novikov functional algorithm. On the other hand, the scatterer is selected in the form of a homogeneous cylinder with the monopole scattering coefficient that coincides with the given one. The results obtained for the monopole inhomogeneity and for the corresponding cylindrical scatterer are compared in the coordinate and spatial-spectral spaces. The physical reasons for the similarities and differences in these results are discussed when the amplitude of the scattering coefficient changes, as well as when passing from one set to another.


Sign in / Sign up

Export Citation Format

Share Document