Features of solving the direct and inverse scattering problems for two sets of monopole scatterers

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Konstantin V. Dmitriev ◽  
Olga D. Rumyantseva

Abstract Research presented in this paper was initiated by the publication [A. D. Agaltsov and R. G. Novikov, Examples of solving the inverse scattering problem and the equations of the Veselov–Novikov hierarchy from the scattering data of point potentials, Russian Math. Surveys 74 (2019), 3, 373–386] and is based on its results. Two sets of the complex monopole scattering coefficients are distinguished among the possible values of these coefficients for nonabsorbing inhomogeneities. These sets differ in phases of the scattering coefficients. In order to analyze the features and possibilities of reconstructing the inhomogeneities of both sets, on the one hand, the inverse problem is solved for each given value of the monopole scattering coefficient using the Novikov functional algorithm. On the other hand, the scatterer is selected in the form of a homogeneous cylinder with the monopole scattering coefficient that coincides with the given one. The results obtained for the monopole inhomogeneity and for the corresponding cylindrical scatterer are compared in the coordinate and spatial-spectral spaces. The physical reasons for the similarities and differences in these results are discussed when the amplitude of the scattering coefficient changes, as well as when passing from one set to another.


2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Jiyu Sun ◽  
Yuhui Han

Recently, a new method, called the extended sampling method (ESM), was proposed for the inverse scattering problems. Similar to the classical linear sampling method (LSM), the ESM is simple to implement and fast. Compared to the LSM which uses full-aperture scattering data, the ESM only uses the scattering data of one incident wave. In this paper, we generalize the ESM for the inverse acoustic source problems. We show that the indicator function of ESM, which is defined using the approximated solutions of some linear ill-posed integral equations, is small when the support of the source is contained in the sampling disc and is large when the source is outside. This behavior is similar to the ESM for the inverse scattering problem. Numerical examples are presented to show the effectiveness of the method.



1991 ◽  
Vol 118 (1-2) ◽  
pp. 119-131 ◽  
Author(s):  
M. A. Astaburuaga ◽  
Claudio Fernández ◽  
Víctor H. Cortés

SynopsisIn this paper we study the direct and inverse scattering problem on the phase space for a classical particle moving under the influence of a conservative force. We provide a formula for the scattering operator in the one-dimensional case and we settle the properties of the potential that can be deduced from it. We also study the question of recovering the shape of the barriers which can be seen from −∞ and ∞. An example is given showing that these barriers are not uniquely determined by the scattering operator.





1986 ◽  
Vol 01 (07) ◽  
pp. 449-454 ◽  
Author(s):  
V.M. MUZAFAROV

We develop a consistent approach to an inverse scattering problem for the Schrodinger equation with nonlocal potentials. The main result presented in this paper is that for the two-body scattering data, given the problem of reconstructing both the family of phase equivalent two-body wavefunctions and the corresponding family of phase equivalent half-off-shell t-matrices, is reduced to solving a regular integral equation. This equation may be regarded as a generalization of the Gel’fand-Levitan equation.





2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
M. T. Bevacqua ◽  
L. Di Donato

Total Variation and Compressive Sensing (TV-CS) techniques represent a very attractive approach to inverse scattering problems. In fact, if the unknown is piecewise constant and so has a sparse gradient, TV-CS approaches allow us to achieve optimal reconstructions, reducing considerably the number of measurements and enforcing the sparsity on the gradient of the sought unknowns. In this paper, we introduce two different techniques based on TV-CS that exploit in a different manner the concept of gradient in order to improve the solution of the inverse scattering problems obtained by TV-CS approach. Numerical examples are addressed to show the effectiveness of the method.



2011 ◽  
Vol 20 (08) ◽  
pp. 1765-1773 ◽  
Author(s):  
WERNER SCHEID ◽  
BARNABAS APAGYI

In nuclear physics, the inverse scattering problem for coupled channels at fixed energies searches for the coupling potentials by using the S matrix as information. On the basis of the Newton–Sabatier method we investigate the special case that the coupling is independent of the total angular momentum. We discuss transparent potentials and consider a principal, but not practical method for the solution of coupling potentials dependent on total angular momentum.



Sign in / Sign up

Export Citation Format

Share Document