Active Separation Control for Lifting Surfaces at Low-Reynolds Number Operating Conditions

Author(s):  
A. Gross ◽  
W. Balzer ◽  
H.F. Fasel
2012 ◽  
Vol 135 (1) ◽  
Author(s):  
Christopher R. Marks ◽  
Rolf Sondergaard ◽  
Mitch Wolff ◽  
Rich Anthony

This paper presents experimental work comparing several Dielectric Barrier Discharge (DBD) plasma actuator configurations for low Reynolds number separation control. Actuators studied here are being investigated for use in a closed loop separation control system. The plasma actuators were fabricated in the U.S. Air Force Research Laboratory Propulsion Directorate’s thin film laboratory and applied to a low Reynolds number airfoil that exhibits similar suction surface behavior to those observed on Low Pressure (LP) Turbine blades. In addition to typical asymmetric arrangements producing downstream jets, one electrode configurations was designed to produce an array of off axis jets, and one produced a spanwise array of linear vertical jets in order to generate vorticity and improved boundary layer to freestream mixing. The actuators were installed on an airfoil and their performance compared by flow visualization, surface stress sensitive film (S3F), and drag measurements. The experimental data provides a clear picture of the potential utility of each design. Experiments were carried out at four Reynolds numbers, 1.4 × 105, 1.0 × 105, 6.0 × 104, and 5.0 × 104 at a-1.5 deg angle of attack. Data was taken at the AFRL Propulsion Directorate’s Low Speed Wind Tunnel (LSWT) facility.


Author(s):  
Andrea Arnone ◽  
Michele Marconcini ◽  
Roberto Pacciani ◽  
Claudia Schipani ◽  
Ennio Spano

A quasi–three–dimensional, blade–to–blade, time–accurate, viscous solver w as used for a three–stage LP turbine study Due to the low Reynolds number, transitional computations were performed. Unsteady analyses were then carried out by varying the circumferential relative position of consecutive vanes and blade rows to study the effects of clocking on the turbine’s performance. A clocking strategy developed in order to limit the number of configurations to be analyzed is discussed. The optimum analytically–determined clocking position is illustrated for two different operating conditions, referred to as cruise and takeoff. The effects of clocking on wake interaction mechanisms and unsteady blade loadings is presented and discussed. For low Reynolds number turbine flows, the importance of taking transition into account in clocking analysis is demonstrated by a comparison with a fully turbulent approach.


2016 ◽  
Vol 120 (1228) ◽  
pp. 971-983 ◽  
Author(s):  
D. J. Moreau ◽  
C. J. Doolan

ABSTRACTThe flow and noise created by sawtooth trailing-edge serrations has been studied experimentally at a low Reynolds number. Experiments have been performed on a flat-plate model with an elliptical leading edge and an asymmetrically bevelled trailing edge at Reynolds numbers of Rec = 1 × 105–1.3 × 105, based on chord. Wide serrations with a wavelength (λs) to amplitude (2h) ratio of λs/h = 0.6 were found to reduce the overall sound pressure level by up to 11dB. In contrast, narrower serrations with λs/h = 0.2 produce tonal noise and increase the overall noise level by up to 4dB. Intense vortices across the span of the trailing edge with narrow serrations are shown to be the source of tonal noise. Wide serrations reduce turbulent velocity fluctuations at low frequencies which explains the lower radiated noise. The narrow serrations that produce low Reynolds number tonal noise were shown previously to be effective at higher Reynolds numbers (Rec > 2 × 105), demonstrating that care is needed to fully understand the flow field over serrations for all intended operating conditions.


Processes ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 2102
Author(s):  
Xiaopei Yang ◽  
Jun Wang ◽  
Boyan Jiang ◽  
Zhi’ang Li ◽  
Qianhao Xiao

Riblets with an appropriate size can effectively restrain turbulent boundary layer thickness and reduce viscous drag, but the effects of riblets strongly depend on the appearance of the fabric that is to be applied and its operating conditions. In this study, in order to improve the aerodynamic performance of a low-pressure fan by using riblet technology, sawtooth riblets on NACA4412 airfoil are examined at the low Reynolds number of 1 × 105, and the airfoil is operated at angles of attack (AOAs) ranging from approximately 0° to 12°. The numerical simulation is carried out by employing the SST k–ω turbulence model through the Ansys Fluent, and the effects of the riblets’ length and height on aerodynamic performance and flow characteristics of the airfoil are investigated. The results indicate that the amount of drag reduction varies greatly with riblet length and height and the AOA of airfoil flow. By contrast, the riblets are detrimental to the airfoil in some cases. The most effective riblet length is found to be a length of 0.8 chord, which increases the lift and reduces the drag under whole AOA conditions, and the maximum improvements in both are 17.46% and 15.04%, respectively. The most effective height for the riblet with the length of 0.5 chord is 0.6 mm. This also improves the aerodynamic performance and achieves a change rate of 12.67% and 14.8% in the lift and drag coefficients, respectively. In addition, the riblets facilitate a greater improvement in airfoil at larger AOAs. The flow fields demonstrate that the riblets with a drag reduction effect form “the antifriction-bearing” structure near the airfoil surface and effectively restrain the trailing separation vortex. The ultimate cause of the riblet drag reduction effect is the velocity gradient at the bottom of the boundary layers being increased by the riblets, which results in a decrease in boundary thickness and energy loss.


AIAA Journal ◽  
2021 ◽  
pp. 1-15
Author(s):  
Yizhou Wang ◽  
Haideng Zhang ◽  
Yun Wu ◽  
Yinghong Li ◽  
Yifei Zhu

Sign in / Sign up

Export Citation Format

Share Document