Human action recognition to human behavior analysis

Author(s):  
Neziha Jaouedi ◽  
Noureddine Boujnah ◽  
Oumayma Htiwich ◽  
Med Salim Bouhlel
Animals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 485
Author(s):  
Liqi Feng ◽  
Yaqin Zhao ◽  
Yichao Sun ◽  
Wenxuan Zhao ◽  
Jiaxi Tang

Behavior analysis of wild felines has significance for the protection of a grassland ecological environment. Compared with human action recognition, fewer researchers have focused on feline behavior analysis. This paper proposes a novel two-stream architecture that incorporates spatial and temporal networks for wild feline action recognition. The spatial portion outlines the object region extracted by Mask region-based convolutional neural network (R-CNN) and builds a Tiny Visual Geometry Group (VGG) network for static action recognition. Compared with VGG16, the Tiny VGG network can reduce the number of network parameters and avoid overfitting. The temporal part presents a novel skeleton-based action recognition model based on the bending angle fluctuation amplitude of the knee joints in a video clip. Due to its temporal features, the model can effectively distinguish between different upright actions, such as standing, ambling, and galloping, particularly when the felines are occluded by objects such as plants, fallen trees, and so on. The experimental results showed that the proposed two-stream network model can effectively outline the wild feline targets in captured images and can significantly improve the performance of wild feline action recognition due to its spatial and temporal features.


2013 ◽  
Vol 18 (2-3) ◽  
pp. 49-60 ◽  
Author(s):  
Damian Dudzńiski ◽  
Tomasz Kryjak ◽  
Zbigniew Mikrut

Abstract In this paper a human action recognition algorithm, which uses background generation with shadow elimination, silhouette description based on simple geometrical features and a finite state machine for recognizing particular actions is described. The performed tests indicate that this approach obtains a 81 % correct recognition rate allowing real-time image processing of a 360 X 288 video stream.


2018 ◽  
Vol 6 (10) ◽  
pp. 323-328
Author(s):  
K.Kiruba . ◽  
D. Shiloah Elizabeth ◽  
C Sunil Retmin Raj

ROBOT ◽  
2012 ◽  
Vol 34 (6) ◽  
pp. 745 ◽  
Author(s):  
Bin WANG ◽  
Yuanyuan WANG ◽  
Wenhua XIAO ◽  
Wei WANG ◽  
Maojun ZHANG

2021 ◽  
Vol 11 (11) ◽  
pp. 4940
Author(s):  
Jinsoo Kim ◽  
Jeongho Cho

The field of research related to video data has difficulty in extracting not only spatial but also temporal features and human action recognition (HAR) is a representative field of research that applies convolutional neural network (CNN) to video data. The performance for action recognition has improved, but owing to the complexity of the model, some still limitations to operation in real-time persist. Therefore, a lightweight CNN-based single-stream HAR model that can operate in real-time is proposed. The proposed model extracts spatial feature maps by applying CNN to the images that develop the video and uses the frame change rate of sequential images as time information. Spatial feature maps are weighted-averaged by frame change, transformed into spatiotemporal features, and input into multilayer perceptrons, which have a relatively lower complexity than other HAR models; thus, our method has high utility in a single embedded system connected to CCTV. The results of evaluating action recognition accuracy and data processing speed through challenging action recognition benchmark UCF-101 showed higher action recognition accuracy than the HAR model using long short-term memory with a small amount of video frames and confirmed the real-time operational possibility through fast data processing speed. In addition, the performance of the proposed weighted mean-based HAR model was verified by testing it in Jetson NANO to confirm the possibility of using it in low-cost GPU-based embedded systems.


Sign in / Sign up

Export Citation Format

Share Document