A Deep CNN Approach with Transfer Learning for Image Recognition

Author(s):  
Cristian Iorga ◽  
Victor-Emil Neagoe
Sensors ◽  
2020 ◽  
Vol 20 (9) ◽  
pp. 2639
Author(s):  
Quan T. Ngo ◽  
Seokhoon Yoon

Facial expression recognition (FER) is a challenging problem in the fields of pattern recognition and computer vision. The recent success of convolutional neural networks (CNNs) in object detection and object segmentation tasks has shown promise in building an automatic deep CNN-based FER model. However, in real-world scenarios, performance degrades dramatically owing to the great diversity of factors unrelated to facial expressions, and due to a lack of training data and an intrinsic imbalance in the existing facial emotion datasets. To tackle these problems, this paper not only applies deep transfer learning techniques, but also proposes a novel loss function called weighted-cluster loss, which is used during the fine-tuning phase. Specifically, the weighted-cluster loss function simultaneously improves the intra-class compactness and the inter-class separability by learning a class center for each emotion class. It also takes the imbalance in a facial expression dataset into account by giving each emotion class a weight based on its proportion of the total number of images. In addition, a recent, successful deep CNN architecture, pre-trained in the task of face identification with the VGGFace2 database from the Visual Geometry Group at Oxford University, is employed and fine-tuned using the proposed loss function to recognize eight basic facial emotions from the AffectNet database of facial expression, valence, and arousal computing in the wild. Experiments on an AffectNet real-world facial dataset demonstrate that our method outperforms the baseline CNN models that use either weighted-softmax loss or center loss.


2021 ◽  
Vol 290 ◽  
pp. 02020
Author(s):  
Boyu Zhang ◽  
Xiao Wang ◽  
Shudong Li ◽  
Jinghua Yang

Current underwater shipwreck side scan sonar samples are few and difficult to label. With small sample sizes, their image recognition accuracy with a convolutional neural network model is low. In this study, we proposed an image recognition method for shipwreck side scan sonar that combines transfer learning with deep learning. In the non-transfer learning, shipwreck sonar sample data were used to train the network, and the results were saved as the control group. The weakly correlated data were applied to train the network, then the network parameters were transferred to the new network, and then the shipwreck sonar data was used for training. These steps were repeated using strongly correlated data. Experiments were carried out on Lenet-5, AlexNet, GoogLeNet, ResNet and VGG networks. Without transfer learning, the highest accuracy was obtained on the ResNet network (86.27%). Using weakly correlated data for transfer training, the highest accuracy was on the VGG network (92.16%). Using strongly correlated data for transfer training, the highest accuracy was also on the VGG network (98.04%). In all network architectures, transfer learning improved the correct recognition rate of convolutional neural network models. Experiments show that transfer learning combined with deep learning improves the accuracy and generalization of the convolutional neural network in the case of small sample sizes.


Sign in / Sign up

Export Citation Format

Share Document