ecg arrhythmia
Recently Published Documents


TOTAL DOCUMENTS

136
(FIVE YEARS 56)

H-INDEX

14
(FIVE YEARS 3)

2021 ◽  
Vol 2 ◽  
pp. 100013
Author(s):  
Lijuan Zheng ◽  
Zihan Wang ◽  
Junqiang Liang ◽  
Shifan Luo ◽  
Senping Tian

2021 ◽  
Vol 10 (22) ◽  
pp. 5450
Author(s):  
Mohamed Sraitih ◽  
Younes Jabrane ◽  
Amir Hajjam El Hassani

The new advances in multiple types of devices and machine learning models provide opportunities for practical automatic computer-aided diagnosis (CAD) systems for ECG classification methods to be practicable in an actual clinical environment. This imposes the requirements for the ECG arrhythmia classification methods that are inter-patient. We aim in this paper to design and investigate an automatic classification system using a new comprehensive ECG database inter-patient paradigm separation to improve the minority arrhythmical classes detection without performing any features extraction. We investigated four supervised machine learning models: support vector machine (SVM), k-nearest neighbors (KNN), Random Forest (RF), and the ensemble of these three methods. We test the performance of these techniques in classifying: Normal beat (NOR), Left Bundle Branch Block Beat (LBBB), Right Bundle Branch Block Beat (RBBB), Premature Atrial Contraction (PAC), and Premature Ventricular Contraction (PVC), using inter-patient real ECG records from MIT-DB after segmentation and normalization of the data, and measuring four metrics: accuracy, precision, recall, and f1-score. The experimental results emphasized that with applying no complicated data pre-processing or feature engineering methods, the SVM classifier outperforms the other methods using our proposed inter-patient paradigm, in terms of all metrics used in experiments, achieving an accuracy of 0.83 and in terms of computational cost, which remains a very important factor in implementing classification models for ECG arrhythmia. This method is more realistic in a clinical environment, where varieties of ECG signals are collected from different patients.


Measurement ◽  
2021 ◽  
Vol 185 ◽  
pp. 110040
Author(s):  
Wei Fan ◽  
Yujuan Si ◽  
Weiyi Yang ◽  
Gong Zhang

2021 ◽  
Vol 121 ◽  
pp. 102181
Author(s):  
Rongjun Ge ◽  
Tengfei Shen ◽  
Ying Zhou ◽  
Chengyu Liu ◽  
Libo Zhang ◽  
...  

Author(s):  
Anjana K.S

Abstract: Heart diseases are the one of the primary reasons of human death today. There are many recent technologies are used to assist the medical professionals and doctors in the prediction of heart disease in the early stage. Prediction of heart disease is a critical challenge in the area of clinical data analysis. This paper introduces a technique to detect arrhythmia, which is a representative type of cardio vascular diseases. Arrhythmia refers to any irregular change from the normal heart rhythms, means that your heart beats too quickly, too slowly, or with an irregular pattern. The Electro Cardiogram (ECG) is used as an input for the arrhythmia detection. It displays the rhythm and status of the heart. This paper propose an effective ECG arrhythmia classification approach based on a deep convolutional neural network (CNN), which has lately demonstrated remarkable performance in the field of machine learning. It perform the classification without any manual pre-processing of the ECG signals such as noise filtering, feature extraction, and feature reduction. Keywords: Arrhythmia, ECG, deep learning, CNN, ResNet


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Dengqing Zhang ◽  
Yuxuan Chen ◽  
Yunyi Chen ◽  
Shengyi Ye ◽  
Wenyu Cai ◽  
...  

The electrocardiogram (ECG) is one of the most powerful tools used in hospitals to analyze the cardiovascular status and check health, a standard for detecting and diagnosing abnormal heart rhythms. In recent years, cardiovascular health has attracted much attention. However, traditional doctors’ consultations have disadvantages such as delayed diagnosis and high misdiagnosis rate, while cardiovascular diseases have the characteristics of early diagnosis, early treatment, and early recovery. Therefore, it is essential to reduce the misdiagnosis rate of heart disease. Our work is based on five different types of ECG arrhythmia classified according to the AAMI EC57 standard, namely, nonectopic, supraventricular ectopic, ventricular ectopic, fusion, and unknown beat. This paper proposed a high-accuracy ECG arrhythmia classification method based on convolutional neural network (CNN), which could accurately classify ECG signals. We evaluated the classification effect of this classification method on the supraventricular ectopic beat (SVEB) and ventricular ectopic beat (VEB) based on the MIT-BIH arrhythmia database. According to the results, the proposed method achieved 99.8% accuracy, 98.4% sensitivity, 99.9% specificity, and 98.5% positive prediction rate for detecting VEB. Detection of SVEB achieved 99.7% accuracy, 92.1% sensitivity, 99.9% specificity, and 96.8% positive prediction rate.


An important diagnostic method for diagnosing abnormalities in the human heart is the electrocardiogram (ECG). A large number of heart patients increase the assignment of physicians. To reduce their assignment, an automatic computer detection system is needed. In this study, a computer system for classifying ECG signals is presented. The MIT-BIH, ECG arrhythmia database is used for analysis. After the ECG signal is noisy in the preprocessing stage, the data feature is extracted. In the feature extraction step, the decision tree is used and the support vector machine (SVM) is constructed to classify the ECG signal into two categories. It is normal or abnormal. The results show that the system classifies the given ECG signal with 90% sensitivity.


Author(s):  
Jianfeng Cui ◽  
Lixin Wang ◽  
Xiangmin He ◽  
Victor Hugo C. De Albuquerque ◽  
Salman A. AlQahtani ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document