Real-time generation of cooperative merging trajectory on the motor way using model predictive control scheme

Author(s):  
Masakazu Mukai ◽  
Taketoshi Kawabe
2017 ◽  
Vol 66 (12) ◽  
pp. 10911-10922 ◽  
Author(s):  
Mauro Salazar ◽  
Camillo Balerna ◽  
Philipp Elbert ◽  
Fernando P. Grando ◽  
Christopher H. Onder

This paper examines the performance of Model Predictive Control (MPC) scheme for an Active suspension. A vehicle suspension is designed to provide superior ride comfort and road handling characteristics. Unlike passive suspensions, the Active suspension can change the dynamic of suspension in real-time by injecting force into the system. MPC allows the active suspension to provide better and consistent passenger comfort and road handling capabilities for different road profile. Even though long back, the idea of active suspension conceived, the prohibitive cost and complexity restricted its usage. In recent years active suspension is receiving more and more attention with users preferring a high-end car. In an active suspension for the real-time adjustment of the control force, need a design of a controller. In literature, many controllers used such as Proportional Integral Derivative (PID), Linear Quadratic regulators (LQR), Fuzzy logic controller, Artificial Neural Networks (ANN). In this paper, revealed a model predictive control arrangement for Active suspension model. MPC is an optimal control scheme which uses a model of plant for predicting the future output. The control inputs are optimized such that these predicted outputs meet the desired level of performance. Tested the MPC control scheme is using a benchscale replica of Quarter active suspension model from QUANSER. To better appreciate the capabilities of the MPC Control Scheme, compared the performance of the active suspension with that of an LQR control scheme, and passive suspension.


Machines ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 105
Author(s):  
Zhenzhong Chu ◽  
Da Wang ◽  
Fei Meng

An adaptive control algorithm based on the RBF neural network (RBFNN) and nonlinear model predictive control (NMPC) is discussed for underwater vehicle trajectory tracking control. Firstly, in the off-line phase, the improved adaptive Levenberg–Marquardt-error surface compensation (IALM-ESC) algorithm is used to establish the RBFNN prediction model. In the real-time control phase, using the characteristic that the system output will change with the external environment interference, the network parameters are adjusted by using the error between the system output and the network prediction output to adapt to the complex and uncertain working environment. This provides an accurate and real-time prediction model for model predictive control (MPC). For optimization, an improved adaptive gray wolf optimization (AGWO) algorithm is proposed to obtain the trajectory tracking control law. Finally, the tracking control performance of the proposed algorithm is verified by simulation. The simulation results show that the proposed RBF-NMPC can not only achieve the same level of real-time performance as the linear model predictive control (LMPC) but also has a superior anti-interference ability. Compared with LMPC, the tracking performance of RBF-NMPC is improved by at least 43% and 25% in the case of no interference and interference, respectively.


Automatica ◽  
2020 ◽  
Vol 118 ◽  
pp. 109030 ◽  
Author(s):  
Johannes Köhler ◽  
Matthias A. Müller ◽  
Frank Allgöwer

Sign in / Sign up

Export Citation Format

Share Document