Grid-side cascade inverter system as an interface for wind energy storage

Author(s):  
S. D. G. Jayasinghe ◽  
D. M. Vilathgamuwa ◽  
U. K. Madawala
Author(s):  
S. G. Ignatiev ◽  
S. V. Kiseleva

Optimization of the autonomous wind-diesel plants composition and of their power for guaranteed energy supply, despite the long history of research, the diversity of approaches and methods, is an urgent problem. In this paper, a detailed analysis of the wind energy characteristics is proposed to shape an autonomous power system for a guaranteed power supply with predominance wind energy. The analysis was carried out on the basis of wind speed measurements in the south of the European part of Russia during 8 months at different heights with a discreteness of 10 minutes. As a result, we have obtained a sequence of average daily wind speeds and the sequences constructed by arbitrary variations in the distribution of average daily wind speeds in this interval. These sequences have been used to calculate energy balances in systems (wind turbines + diesel generator + consumer with constant and limited daily energy demand) and (wind turbines + diesel generator + consumer with constant and limited daily energy demand + energy storage). In order to maximize the use of wind energy, the wind turbine integrally for the period in question is assumed to produce the required amount of energy. For the generality of consideration, we have introduced the relative values of the required energy, relative energy produced by the wind turbine and the diesel generator and relative storage capacity by normalizing them to the swept area of the wind wheel. The paper shows the effect of the average wind speed over the period on the energy characteristics of the system (wind turbine + diesel generator + consumer). It was found that the wind turbine energy produced, wind turbine energy used by the consumer, fuel consumption, and fuel economy depend (close to cubic dependence) upon the specified average wind speed. It was found that, for the same system with a limited amount of required energy and high average wind speed over the period, the wind turbines with lower generator power and smaller wind wheel radius use wind energy more efficiently than the wind turbines with higher generator power and larger wind wheel radius at less average wind speed. For the system (wind turbine + diesel generator + energy storage + consumer) with increasing average speed for a given amount of energy required, which in general is covered by the energy production of wind turbines for the period, the maximum size capacity of the storage device decreases. With decreasing the energy storage capacity, the influence of the random nature of the change in wind speed decreases, and at some values of the relative capacity, it can be neglected.


Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 1129
Author(s):  
Huijia Yang ◽  
Weiguang Fan ◽  
Guangyu Qin ◽  
Zhenyu Zhao

With the increasing demand for clean and low-carbon energy, high proportion of renewable energy has been integrated into the receiving-end grid. The grid-side energy storage project can ensure the safe and stable operation of the grid, but it still faces many problems, such as high initial investment, difficult operation and maintenance, unclear profit model, lack of business mode. Therefore, it is of great significance to evaluate the comprehensive benefit of energy storage projects in order to guide the sustainable development of large-scale energy storage projects and power system. By studying the technical and economic characteristics of energy storage, this paper establishes a comprehensive evaluation system from four dimensions of energy efficiency, economic, social, and environmental benefit. Combined with typical business modes and determining the subdivision index system of different modes, the comprehensive benefit evaluation model of grid-side commercial storage project based on Fuzzy-Analytic Network Process (ANP) approach is established. Empirical analysis of a 100-megawatt storage project is carried out to evaluate the project benefits comprehensively, the potential problems of the market development and business mode of the grid-side large-scale storage project are discussed, and the future development orientation and suggestions are put forward.


Author(s):  
Lema Gharsellaoui ◽  
Moez Ghariani

The abundant energy available in nature can be harnessed and converted to electricity in a sustainable way to supply the necessary power to elevate the living standards of the people without access to the electricity grid. Wind power is one of the cleanest and safest of all the renewable commercial methods of generating electricity. However, wind energy is difficult to use due to its stochastic variability. Energy storage can overcome the main drawback. This article consists of studying a wind starting system based on DFIG and operating in isolated mode. This system is formed by a bank of batteries and a bidirectional DC/DC converter charging a DC bus voltage as well as these batteries. The control of this system required a cascade control. Such control needs two loops: the inside loop to control the inductive current and the outside one for continuous voltage bus. The theoretical study of this command has been validated using PSIM software.


Sign in / Sign up

Export Citation Format

Share Document