scholarly journals A Fuzzy-ANP Approach for Comprehensive Benefit Evaluation of Grid-Side Commercial Storage Project

Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 1129
Author(s):  
Huijia Yang ◽  
Weiguang Fan ◽  
Guangyu Qin ◽  
Zhenyu Zhao

With the increasing demand for clean and low-carbon energy, high proportion of renewable energy has been integrated into the receiving-end grid. The grid-side energy storage project can ensure the safe and stable operation of the grid, but it still faces many problems, such as high initial investment, difficult operation and maintenance, unclear profit model, lack of business mode. Therefore, it is of great significance to evaluate the comprehensive benefit of energy storage projects in order to guide the sustainable development of large-scale energy storage projects and power system. By studying the technical and economic characteristics of energy storage, this paper establishes a comprehensive evaluation system from four dimensions of energy efficiency, economic, social, and environmental benefit. Combined with typical business modes and determining the subdivision index system of different modes, the comprehensive benefit evaluation model of grid-side commercial storage project based on Fuzzy-Analytic Network Process (ANP) approach is established. Empirical analysis of a 100-megawatt storage project is carried out to evaluate the project benefits comprehensively, the potential problems of the market development and business mode of the grid-side large-scale storage project are discussed, and the future development orientation and suggestions are put forward.

Energies ◽  
2019 ◽  
Vol 12 (6) ◽  
pp. 1070 ◽  
Author(s):  
Serguey Maximov ◽  
Gareth Harrison ◽  
Daniel Friedrich

Chile has abundant solar and wind resources and renewable generation is becoming competitive with fossil fuel generation. However, due to renewable resource variability their large-scale integration into the electricity grid is not trivial. This study evaluates the long-term impact of grid level energy storage, specifically Pumped Thermal Energy Storage (PTES), on the penetration of solar and wind energies and on CO2 emissions reduction in Chile. A cost based linear optimization model of the Chilean electricity system is developed and used to analyse and optimize different renewable generation, transmission and energy storage scenarios until 2050. For the base scenario of decommissioning ageing coal plants and no new coal and large hydro generation, the generation gap is filled by solar photovoltaic (PV), concentrated solar power (CSP) and flexible gas generation with the associated drop of 78% in the CO2 emission factor. The integration of on-grid 8h capacity storage increases the solar PV fraction which leads to a 6% reduction in operation and investment costs by 2050. However, this does not necessarily lead to further reductions in the long term emissions. Thus, it is crucial to consider all aspects of the energy system when planning the transition to a low carbon electricity system.


2020 ◽  
Vol 213 ◽  
pp. 02036
Author(s):  
Nan Xu ◽  
Zihao Zhao ◽  
Bo Zhou ◽  
Ningning Shi ◽  
Yongli Wang ◽  
...  

The smart energy system is the new direction of the current energy development. It plays a vital role in the low-carbon development of my country’s energy industry and in promoting the transformation and upgrading of the energy sector. For the construction and long-term development of smart energy systems, this paper constructs a comprehensive benefit evaluation index system for smart energy systems that can cover all aspects based on the economic, environmental protection, and reliability of energy regulation and other target benefits, and proposes a system based on AHP -Improved evaluation method of entropy weight method, aiming at the hierarchical structure of smart energy evaluation system, adopts analytic hierarchy process and improved entropy weight method to combine subjective weight and objective weight, and scientifically, reasonably and objectively the construction level of smart energy system evaluation of.


2017 ◽  
Vol 139 (09) ◽  
pp. 30-35 ◽  
Author(s):  
F. Todd Davidson ◽  
Kazunori Nagasawa ◽  
Michael E. Webber

This article explains the need for producing synthetic fuels in support of making a clean and reliable energy system. This production process is expected to solve several problems at once: stabilizing intermittent electricity supply while creating renewable fuels for use in power generation, transportation, and industry. The large-scale introduction of wind and solar power now makes the production of renewable fuels at least technically feasible. Policymakers should start to give electrofuels the attention they deserve. There are many tax credits or subsidies for renewable or low-carbon sources of electricity such as wind, solar, geothermal, and nuclear, but electrofuels are not yet prominent in the discussion. In addition, while states like California have mandates for energy storage, stakeholders often ignore the option of electrofuels despite the potential for them to be a more useful and affordable competitor to batteries. The article concludes that electrofuels may provide a unique solution to a number of challenges, and it is time our markets and policies recognize that possibility.


2020 ◽  
Vol 165 ◽  
pp. 06030
Author(s):  
Zhicheng Xu ◽  
Jun Liu ◽  
Zhuonan Li

In the context of energy transformation, re-electrification has become an important way to build a clean and low-carbon energy system. The large-scale re-electrical load access further increases the flexibility requirements on the user demand side. The application of the energy storage system (ESS) can not only improve the degree of electrification of the energy system but also improve the energy utilization efficiency. This paper analyzes the different development modes and key characteristics of energy storage on the power supply side, grid side and demand side in large-scale re-electrical load access areas. Five dimensions (such as storage security, technology maturity, system cost, storage scenario suitability and storage scalability) are selected to characterize the feasibility of a certain energy storage technology in a given application scenario. For different application scenarios, studying the appropriate development mode and its adaptability to the environment will help the healthy and sustainable development of energy storage.


Sign in / Sign up

Export Citation Format

Share Document