A soft-switching three-phase ac-ac converter with a high-frequency ac link

Author(s):  
Hamidreza Keyhani ◽  
Hamid A. Toliyat
Author(s):  
C. Vidhya ◽  
V. Ravikumar ◽  
S. Muralidha

: The objective of this paper is to implement an ac link universal power converter controlled BLDC motor for medical applications. The ac link universal power converter is a soft switched high frequency ac link converter, created using the parallel combination of an inductor and a capacitor. The parallel ac link converter handle the ac voltages and currents with low reactive ratings at the link and offers improved power factor, low power consumption, more efficiency and less weight on comparison with the traditional dc link converter. Because of the high throughput, BLDC motors are preferred widely medical applications. A modulation technique called Space Vector Pulse Width Modulation (SVPWM) is used to generate the three phase power for the BLDC motors from the input DC supply. To validate the proposed system, simulations are performed in MATLAB – Simulink and an experimental prototype is constructed to supplement the simulation results.


Author(s):  
Abdelkarim Aouiti ◽  
Hajer Marzougui ◽  
Faouzi Bacha

In this paper, a high-frequency AC-link DC–AC converter is presented with detailed analysis. This converter is used as an interface between a dc power source and a grid. The studied converter is a universal power converter which consists of two bridges separated by an AC-link; each bridge is connected to a source or it feeds a load. The link of this converter contains a parallel pair inductance-capacitor. The inductance is used to stock/supply energy and for the link capacitor, it allows to perform soft switching during turning on/turning off of the switches. The studied converter has considerable advantages compared to the other topologies. Its fundamental properties are, especially, the compactness, reliability and efficiency which it ensures. Also, it guarantees longer lifetime and the possibility to transfer power in the two power flow directions. In this talk, the principles of the ac-link inverter operation are clearly explained in this paper. Simulation results, under MATLAB/SIMULINK, are shown to validate the correct operation and the efficiency of the proposed converter topology. The control algorithm is, also, experimentally implemented using a dSPACE 1104 control board.


2019 ◽  
Vol 34 (4) ◽  
pp. 3888-3898 ◽  
Author(s):  
Zhengrong Huang ◽  
Zhengyang Liu ◽  
Fred C. Lee ◽  
Qiang Li

2020 ◽  
Author(s):  
Leonardo Freire Pacheco ◽  
Ivo Barbi ◽  
Kaio Cesar Maciel Nascimento

An AC-AC converter with high-frequency link employing LLC resonant converter operating in the vicinity of the resonance frequency is studied, in which the output stage is unique and formed by a high-frequency AC-AC converter employing four quadrant switches. The topology, its operation and the modulation strategy are presented. The high-frequency stage switches located on the primary side of the transformer operate with soft switching of the ZVS type, while the four quadrant switches that form the output stage operate with soft switching of the ZCS type. Experimental data on a 1.5 kW experimental prototype that was designed, built and tested in the laboratory, with 220 VRMS input, 220 VRMS output and 40 kHz switching frequency are given in the paper. The studied converter can be considered a candidate for the building block of medium voltage solid-state transformers (SST) for power distribution systems.<br>


1999 ◽  
Vol 119 (5) ◽  
pp. 659-669 ◽  
Author(s):  
Masakazu Michihira ◽  
Takayuki Ota ◽  
Minwon Park ◽  
Tsuyoshi Funaki ◽  
Zen-Ichiro Kawasaki ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document