Deep Neural Network Based Bearing Fault Diagnosis of Induction Motor Using Fast Fourier Transform Analysis

Author(s):  
Shrinathan Esakimuthu Pandarakone ◽  
Makoto Masuko ◽  
Yukio Mizuno ◽  
Hisahide Nakamura
2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Chao Fu ◽  
Qing Lv ◽  
Hsiung-Cheng Lin

It is crucial to carry out the fault diagnosis of rotating machinery by extracting the features that contain fault information. Many previous works using a deep convolutional neural network (CNN) have achieved excellent performance in finding fault information from feature extraction of detected signals. They, however, may suffer from time-consuming and low versatility. In this paper, a CNN integrated with the adaptive batch normalization (ABN) algorithm (ABN-CNN) is developed to avoid high computing resource requirements of such complex networks. It uses a large-scale convolution kernel at the grassroots level and a multidimensional 3 × 1 small convolution nuclear. Therefore, a fast convergence and high recognition accuracy under noise and load variation environment can be achieved for bearing fault diagnosis. The performance results verify that the proposed model is superior to Support Vector Machine with Fast Fourier Transform (FFT-SVM) and Multilayer Perceptron with Fast Fourier Transform (FFT-MLP) models and Deep Neural Network with Fast Fourier Transform (FFT-DNN).


Machines ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 345
Author(s):  
Van-Cuong Nguyen ◽  
Duy-Tang Hoang ◽  
Xuan-Toa Tran ◽  
Mien Van ◽  
Hee-Jun Kang

Feature extraction from a signal is the most important step in signal-based fault diagnosis. Deep learning or deep neural network (DNN) is an effective method to extract features from signals. In this paper, a novel vibration signal-based bearing fault diagnosis method using DNN is proposed. First, the measured vibration signals are transformed into a new data form called multiple-domain image-representation. By this transformation, the task of signal-based fault diagnosis is transferred into the task of image classification. After that, a DNN with a multi-branch structure is proposed to handle the multiple-domain image representation data. The multi-branch structure of the proposed DNN helps to extract features in multiple domains simultaneously, and to lead to better feature extraction. Better feature extraction leads to a better performance of fault diagnosis. The effectiveness of the proposed method was verified via the experiments conducted with actual bearing fault signals and its comparisons with well-established published methods.


Sensors ◽  
2021 ◽  
Vol 21 (1) ◽  
pp. 244
Author(s):  
Duy Tang Hoang ◽  
Xuan Toa Tran ◽  
Mien Van ◽  
Hee Jun Kang

This paper presents a novel method for fusing information from multiple sensor systems for bearing fault diagnosis. In the proposed method, a convolutional neural network is exploited to handle multiple signal sources simultaneously. The most important finding of this paper is that a deep neural network with wide structure can extract automatically and efficiently discriminant features from multiple sensor signals simultaneously. The feature fusion process is integrated into the deep neural network as a layer of that network. Compared to single sensor cases and other fusion techniques, the proposed method achieves superior performance in experiments with actual bearing data.


2019 ◽  
Vol 14 (3) ◽  
pp. 1201-1210 ◽  
Author(s):  
Mohammed-El-Amine Khodja ◽  
Ameur Fethi Aimer ◽  
Ahmed Hamida Boudinar ◽  
Noureddine Benouzza ◽  
Azeddine Bendiabdellah

Healthcare ◽  
2020 ◽  
Vol 8 (3) ◽  
pp. 234 ◽  
Author(s):  
Hyun Yoo ◽  
Soyoung Han ◽  
Kyungyong Chung

Recently, a massive amount of big data of bioinformation is collected by sensor-based IoT devices. The collected data are also classified into different types of health big data in various techniques. A personalized analysis technique is a basis for judging the risk factors of personal cardiovascular disorders in real-time. The objective of this paper is to provide the model for the personalized heart condition classification in combination with the fast and effective preprocessing technique and deep neural network in order to process the real-time accumulated biosensor input data. The model can be useful to learn input data and develop an approximation function, and it can help users recognize risk situations. For the analysis of the pulse frequency, a fast Fourier transform is applied in preprocessing work. With the use of the frequency-by-frequency ratio data of the extracted power spectrum, data reduction is performed. To analyze the meanings of preprocessed data, a neural network algorithm is applied. In particular, a deep neural network is used to analyze and evaluate linear data. A deep neural network can make multiple layers and can establish an operation model of nodes with the use of gradient descent. The completed model was trained by classifying the ECG signals collected in advance into normal, control, and noise groups. Thereafter, the ECG signal input in real time through the trained deep neural network system was classified into normal, control, and noise. To evaluate the performance of the proposed model, this study utilized a ratio of data operation cost reduction and F-measure. As a result, with the use of fast Fourier transform and cumulative frequency percentage, the size of ECG reduced to 1:32. According to the analysis on the F-measure of the deep neural network, the model had 83.83% accuracy. Given the results, the modified deep neural network technique can reduce the size of big data in terms of computing work, and it is an effective system to reduce operation time.


Sign in / Sign up

Export Citation Format

Share Document