Control Strategy for Multiple Residential Solar PV Systems in Distribution Network with Improved Power Quality

Author(s):  
Yashi Singh ◽  
Bhim Singh ◽  
Sukumar Mishra
2021 ◽  
Vol 19 ◽  
pp. 517-522
Author(s):  
Faiza Al-Harthi ◽  
◽  
Mohammed Albadi ◽  
Rashid Al-Abri ◽  
Abdullah Al-Badi

The importance of solar photovoltaic (PV) systems has grown significantly with the continuous development of the solar cells industry over the past years. However, studying the potential impacts of solar PV systems on the distribution network has recently become an important topic with high attention. This paper presents an overview of the potential power quality impacts of solar PV systems integration on the Petroleum Development Oman (PDO) - Mina Al-Fahal (MAF) Distribution Network under different weather conditions. The investigations was performed using measurements. It was found that the measured voltage unbalance and Total Harmonics Distortion (THD) levels were within the limits stated by the Omani and international distribution codes. Furthermore, the evaluation of voltage flickers showed some violations of the limits specified by the distribution code requiring closer system monitoring.


Electronics ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 55
Author(s):  
Busra Uzum ◽  
Ahmet Onen ◽  
Hany M. Hasanien ◽  
S. M. Muyeen

In order to meet the electricity needs of domestic or commercial buildings, solar energy is more attractive than other renewable energy sources in terms of its simplicity of installation, less dependence on the field and its economy. It is possible to extract solar energy from photovoltaic (PV) including rooftop, ground-mounted, and building integrated PV systems. Interest in rooftop PV system applications has increased in recent years due to simple installation and not occupying an external area. However, the negative effects of increased PV penetration on the distribution system are troublesome. The power loss, reverse power flow (RPF), voltage fluctuations, voltage unbalance, are causing voltage quality problems in the power network. On the other hand, variations in system frequency, power factor, and harmonics are affecting the power quality. The excessive PV penetration also the root cause of voltage stability and has an adverse effect on protection system. The aim of this article is to extensively examines the impacts of rooftop PV on distribution network and evaluate possible solution methods in terms of the voltage quality, power quality, system protection and system stability. Moreover, it is to present a comparison of the advantages/disadvantages of the solution methods discussed, and an examination of the solution methods in which artificial intelligence, deep learning and machine learning based optimization and techniques are discussed with common methods.


Electronics ◽  
2019 ◽  
Vol 8 (12) ◽  
pp. 1443 ◽  
Author(s):  
Abdullah Alshahrani ◽  
Siddig Omer ◽  
Yuehong Su ◽  
Elamin Mohamed ◽  
Saleh Alotaibi

Decarbonisation, energy security and expanding energy access are the main driving forces behind the worldwide increasing attention in renewable energy. This paper focuses on the solar photovoltaic (PV) technology because, currently, it has the most attention in the energy sector due to the sharp drop in the solar PV system cost, which was one of the main barriers of PV large-scale deployment. Firstly, this paper extensively reviews the technical challenges, potential technical solutions and the research carried out in integrating high shares of small-scale PV systems into the distribution network of the grid in order to give a clearer picture of the impact since most of the PV systems installations were at small scales and connected into the distribution network. The paper reviews the localised technical challenges, grid stability challenges and technical solutions on integrating large-scale PV systems into the transmission network of the grid. In addition, the current practices for managing the variability of large-scale PV systems by the grid operators are discussed. Finally, this paper concludes by summarising the critical technical aspects facing the integration of the PV system depending on their size into the grid, in which it provides a strong point of reference and a useful framework for the researchers planning to exploit this field further on.


Author(s):  
Gunjan Varshney ◽  
D S Chauhan ◽  
M P Dave

<p>This paper deals with the evaluation of power quality issues in grid connected PV systems. This paper also presents  complete simulation, modeling and control of three phase grid connected solar PV module with Maximum Power Point Tracking. Perturb and Observe (P&amp;O) method has been used for Maximum Power Point Tracking. In the proposed model DC bus voltage control , harmonic mitigation and power factor control are discussed as power quality issues. The simulation results are shown in the graphical waveforms and simulation is performed in MATLAB using SIMULINK environment and PSB toolboxes. <strong> </strong></p>


2021 ◽  
Author(s):  
◽  
Michael Emmanuel

<p>As the solar PV technology continues to evolve as the most common distributed generation (DG) coupled with increasing interconnection requests, accurate modelling of the potential operational impacts of this game-changer is pivotal in order to maintain the reliability of the electric grid. The overall goal of this research is to conduct an interconnection impact analysis of solar PV systems at increasing penetration levels subject to the feeder constraints within the distribution network. This is carried out with a time series power flow analysis method to capture the time-varying nature of solar PV and load with their interactions with the distribution network device operations. Also, this thesis analyses multiple PV systems scenarios and a wide range of possible impacts to enable distribution system planners and operators understand and characterize grid operations with the integration of PV systems.  An evaluation of the operational and reliability performance of a grid-connected PV system based on IEC standards and industry guides is performed to detect design failures and avoid unnecessary delays to PV penetration. The performance analysis metrics in this research allow cross-comparison between PV systems operating under different climatic conditions. This thesis shows the significant impact of temperature on the overall performance of the PV system. This research conducts an interconnection study for spatially distributed single-phase grid-tied PV systems with a five minute-resolution load and solar irradiance data on a typical distribution feeder. Also, this research compares the performance of generator models, PQ and P |V |, for connecting PV-DG with the distribution feeder with their respective computational costs for a converged power flow solution.  More so, a method capable of computing the incremental capacity additions, measuring risks and upgrade deferral provided by PV systems deployments is investigated in this research. This thesis proposes surrogate metrics, energy exceeding normal rating and unserved energy, for evaluating system reliability and capacity usage which can be a very useful visualization tool for utilities. Also, sensitivity analysis is performed for optimal location of the PV system on the distribution network. This is important because optimal integration of PV systems is often near-optimal for network capacity relief issues as well.  This thesis models the impact of centralized PV variability on the electric grid using the wavelet variability model (WVM) which considers the key factors that affect PV variability such as PV footprint, density and cloud movement over the entire PV plant. The upscaling advantage from a single module and point irradiance sensor to geographic smoothing over the entire PV footprint in WVM is used to simulate effects of a utility-interactive PV system on the distribution feeder.  Further, the PV interconnection scenarios presented in this thesis have been modelled with different time scales ranging from seconds to hours in order to accurately capture and represent various impacts. The analysis and advancements presented in this thesis will help utilities and other stakeholders to develop realistic projections of PV systems impacts on the grid. Also, this research will assist in understanding and full characterization of PV integration with the grid to avoid unnecessary delays.</p>


Sign in / Sign up

Export Citation Format

Share Document