scholarly journals Rooftop Solar PV Penetration Impacts on Distribution Network and Further Growth Factors—A Comprehensive Review

Electronics ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 55
Author(s):  
Busra Uzum ◽  
Ahmet Onen ◽  
Hany M. Hasanien ◽  
S. M. Muyeen

In order to meet the electricity needs of domestic or commercial buildings, solar energy is more attractive than other renewable energy sources in terms of its simplicity of installation, less dependence on the field and its economy. It is possible to extract solar energy from photovoltaic (PV) including rooftop, ground-mounted, and building integrated PV systems. Interest in rooftop PV system applications has increased in recent years due to simple installation and not occupying an external area. However, the negative effects of increased PV penetration on the distribution system are troublesome. The power loss, reverse power flow (RPF), voltage fluctuations, voltage unbalance, are causing voltage quality problems in the power network. On the other hand, variations in system frequency, power factor, and harmonics are affecting the power quality. The excessive PV penetration also the root cause of voltage stability and has an adverse effect on protection system. The aim of this article is to extensively examines the impacts of rooftop PV on distribution network and evaluate possible solution methods in terms of the voltage quality, power quality, system protection and system stability. Moreover, it is to present a comparison of the advantages/disadvantages of the solution methods discussed, and an examination of the solution methods in which artificial intelligence, deep learning and machine learning based optimization and techniques are discussed with common methods.

2012 ◽  
Vol 2012 ◽  
pp. 1-11 ◽  
Author(s):  
M. S. Ballal ◽  
H. M. Suryawanshi ◽  
T. Venkateswara Reddy

The basic power quality problems in the distribution network are voltage sag (dip), voltage flickering, and the service interruptions. STATCOM is a Flexible AC Transmission Systems (FACTS) technology device which can independently control the flow of reactive power. This paper presents the simulation and analysis of a STATCOM for voltage dip and voltage flickering mitigation. Simulations are carried out in MATLAB/Simulink to validate the performance of the STATCOM. A comparison between the six-pulse inverter and the five-level diode-clamped inverter is carried out for the performance of 66/11 KV distribution system.


2021 ◽  
Vol 11 (2) ◽  
pp. 774 ◽  
Author(s):  
Ahmed S. Abbas ◽  
Ragab A. El-Sehiemy ◽  
Adel Abou El-Ela ◽  
Eman Salah Ali ◽  
Karar Mahmoud ◽  
...  

In recent years, with the widespread use of non-linear loads power electronic devices associated with the penetration of various renewable energy sources, the distribution system is highly affected by harmonic distortion caused by these sources. Moreover, the inverter-based distributed generation units (DGs) (e.g., photovoltaic (PV) and wind turbine) that are integrated into the distribution systems, are considered as significant harmonic sources of severe harmful effects on the system power quality. To solve these issues, this paper proposes a harmonic mitigation method for improving the power quality problems in distribution systems. Specifically, the proposed optimal planning of the single tuned harmonic filters (STFs) in the presence of inverter-based DGs is developed by the recent Water Cycle Algorithm (WCA). The objectives of this planning problem aim to minimize the total harmonic distortion (THD), power loss, filter investment cost, and improvement of voltage profile considering different constraints to meet the IEEE 519 standard. Further, the impact of the inverter-based DGs on the system harmonics is studied. Two cases are considered to find the effect of the DGs harmonic spectrum on the system distortion and filter planning. The proposed method is tested on the IEEE 69-bus distribution system. The effectiveness of the proposed planning model is demonstrated where significant reductions in the harmonic distortion are accomplished.


IJOSTHE ◽  
2020 ◽  
Vol 7 (1) ◽  
pp. 5
Author(s):  
Ankeeta . ◽  
Vasant Acharya

Power generation through the renewable energy sources has become more viable and economical than the fossil fuel based power plants. By integrating small scale distributed energy resources, microgrids are being introduced as an alternative approach in generating electrical power at distribution voltage level. The power electronic interface provides the necessary flexibility, security and reliability of operation between micro-sources and the distribution system. The presence of non-linear and the unbalanced loads in the distribution system causes power quality issues in the Microgrid system. This paper explores and reviews different control strategies developed in the literature for the power quality enhancement in microgrids.


Energies ◽  
2019 ◽  
Vol 12 (21) ◽  
pp. 4028 ◽  
Author(s):  
Abreu ◽  
Soares ◽  
Carvalho ◽  
Morais ◽  
Simão ◽  
...  

Challenges in the coordination between the transmission system operator (TSO) and the distribution system operator (DSO) have risen continuously with the integration of distributed energy resources (DER). These technologies have the possibility to provide reactive power support for system operators. Considering the Portuguese reactive power policy as an example of the regulatory framework, this paper proposes a methodology for proactive reactive power management of the DSO using the renewable energy sources (RES) considering forecast uncertainty available in the distribution system. The proposed method applies a stochastic sequential alternative current (AC)-optimal power flow (SOPF) that returns trustworthy solutions for the DSO and optimizes the use of reactive power between the DSO and DER. The method is validated using a 37-bus distribution network considering real data. Results proved that the method improves the reactive power management by taking advantage of the full capabilities of the DER and by reducing the injection of reactive power by the TSO in the distribution network and, therefore, reducing losses.


Energies ◽  
2019 ◽  
Vol 12 (7) ◽  
pp. 1392 ◽  
Author(s):  
Wadim Strielkowski ◽  
Elena Volkova ◽  
Luidmila Pushkareva ◽  
Dalia Streimikiene

Renewable energy sources (RES) are gradually becoming one of the key elements in the process of achieving energy efficiency worldwide. This trend can be observed in many developed Western economies—for example, in the United States, as well as in the United Kingdom. Hence, the role of innovative policies for promoting energy efficiency is becoming crucial in transition to the post-carbon economy. The shift to the carbon-free future make all actors to face forgoing commitments Nevertheless, customers and residential households are the first and the most important players in the pursuit of the energy-efficient future. Without them, carbon-free economy based on RES would never take the shape as envisaged. Our paper focuses on the innovative strategies and policies studying the effect and the scope of RES penetration into the households. We employ and empirical analysis of the effects from using RES in households using an example of the residential households in the northwest region of the United Kingdom (UK) with and without solar photovoltaic (PV) panels and electric vehicles (EV). We analyse the four scenarios that are aimed at analysing the system dynamics and providing differentiation between systems in terms of the varying values of the gross demand, tariffs, metered import, and the total revenue. Our results demonstrate that the solar PV leads to the transfer of costs and wealth regardless of the ownership of PV and EVs. Solar energy generation reduces the share of UK solar PV households per kWh costs of the distribution system which causes the augmenting of the per unit charges as well as to the changes in payments for the electricity that impoverishes less wealthy customer groups. It also becomes clear that with the increase of EV penetration, the existing energy efficiency schemes would have to be revised.


2020 ◽  
Vol 2020 ◽  
pp. 1-23 ◽  
Author(s):  
Kamel A. Alboaouh ◽  
Salman Mohagheghi

This paper presents a review of the impact of rooftop photovoltaic (PV) panels on the distribution grid. This includes how rooftop PVs affect voltage quality, power losses, and the operation of other voltage-regulating devices in the system. A historical background and a classification of the most relevant publications are presented along with the review of the important lessons learned. It has been widely believed that high penetration levels of PVs in the distribution grid can potentially cause problems for node voltages or overhead line flows. However, it is shown in the literature that proper control of the PV resource using smart inverters can alleviate many of those issues, hence paving the way for higher PV penetration levels in the grid.


2016 ◽  
Vol 2016 ◽  
pp. 1-17 ◽  
Author(s):  
A. Elsherif ◽  
T. Fetouh ◽  
H. Shaaban

In recent years a multitude of events have created a new environment for the electric power infrastructure. The presence of small-scale generation near load spots is becoming common especially with the advent of renewable energy sources such as wind power energy. This type of generation is known as distributed generation (DG). The expansion of the distributed generators- (DGs-) based wind energy raises constraints on the distribution networks operation and power quality issues: voltage sag, voltage swell, voltage interruption, harmonic contents, flickering, frequency deviation, unbalance, and so forth. Consequently, the public distribution network conception and connection studies evolve in order to keep the distribution system operating in optimal conditions. In this paper, a comprehensive power quality investigation of a distribution system with embedded wind turbines has been carried out. This investigation is carried out in a comparison aspect between the conventional synchronous generators, as DGs are widely in use at present, and the different wind turbines technologies, which represent the foresightedness of the DGs. The obtained results are discussed with the IEC 61400-21 standard for testing and assessing power quality characteristics of grid-connected wind energy and the IEEE 1547-2003 standard for interconnecting distributed resources with electric power systems.


2018 ◽  
Vol 27 (05) ◽  
pp. 1830002 ◽  
Author(s):  
C. Subramani ◽  
K. R. Ramanand

The current energy scenario in the world considering the overconsumption of fossil fuels as well as its disastrous impact on environment calls for the promotion of renewable resources to take part in the growth towards sustainable development. With the penetration of such intermittent renewable energy sources into the existing grid, it not only enhanced the capability of the grid but also posed challenges regarding system stability. A practical solution to these problems by means of a new technological concept called “electric springs” is presented in this paper which enhances the system stability and provides voltage regulation for the same. Reviewing the various analyses, control methodologies as well as applications regarding the electric spring provides the confidence to further analyze its scope in large-scale power distribution system.


Sign in / Sign up

Export Citation Format

Share Document