IEEE Access ◽  
2019 ◽  
Vol 7 ◽  
pp. 181972-181982 ◽  
Author(s):  
Rui Chen ◽  
Xin Yin ◽  
Xianggen Yin ◽  
Yilin Li ◽  
Jiayuan Lin

IEEE Access ◽  
2018 ◽  
Vol 6 ◽  
pp. 1342-1349 ◽  
Author(s):  
Rahman Dashti ◽  
Mohammad Daisy ◽  
Hamid Reza Shaker ◽  
Maryamsadat Tahavori

Energies ◽  
2020 ◽  
Vol 13 (5) ◽  
pp. 1294
Author(s):  
Ji-Song Hong ◽  
Gi-Do Sim ◽  
Joon-Ho Choi ◽  
Seon-Ju Ahn ◽  
Sang-Yun Yun

This paper proposes a fault location method for power distribution networks using phasor measurement units (PMU) and short circuit analysis. In order to improve the problems of the existing studies, we focused on several approaches as follows. First, in order to minimize the number of PMU installations, a fault location estimation of lateral feeders through short circuit analysis was presented. Second, unbalanced faults and impacts of photovoltaic (PV) were considered. The proposed method consists of two stages. In Stage 1, the fault location was estimated for the main feeder using PMU installed at the start and end points of the main feeder. Symmetrical components of voltage and current variation were calculated by considering the impact of PVs interconnected to the lateral feeders. If the result of Stage 1 indicated a connection section of lateral feeder on the main feeder, Stage 2 would be performed. In Stage 2, the fault location was estimated for the lateral feeder by comparing the results of the short circuit analysis and measurements of PMUs. The short circuit analysis was based on an unbalanced power flow that considered dynamic characteristics of the PV inverter. The proposed method was verified through various fault situations in a test system. For the applicability of the proposed algorithm to the actual system, a noise test was also performed.


Energies ◽  
2020 ◽  
Vol 13 (15) ◽  
pp. 3917 ◽  
Author(s):  
Yangang Shi ◽  
Tao Zheng ◽  
Chang Yang

Traveling wave (TW)-based fault-location methods have been used to determine single-phase-to-ground fault distance in power-distribution networks. The previous approaches detected the arrival time of the initial traveling wave via single ended or multi-terminal measurements. Regarding the multi-branch effect, this paper utilized the reflected waves to obtain multiple arriving times through single ended measurement. Potential fault sections were estimated by searching for the possible traveling wave propagation paths in accordance with the structure of the distribution network. This approach used the entire propagation of a traveling wave measured at a single end without any prerequisite of synchronization, which is a must in multi-terminal measurements. The uniqueness of the fault section was guaranteed by several independent single-ended measurements. Traveling waves obtained in a real 10 kV distribution network were used to determine the fault section, and the results demonstrate the significant effectiveness of the proposed method.


2018 ◽  
Vol 8 (7) ◽  
pp. 1034 ◽  
Author(s):  
Rahman Dashti ◽  
Seyed Salehizadeh ◽  
Hamid Shaker ◽  
Maryamsadat Tahavori

2010 ◽  
Vol 25 (1) ◽  
pp. 479-484 ◽  
Author(s):  
F.L.R. Vidor ◽  
M. Pires ◽  
B.A. Dedavid ◽  
P.D.B. Montani ◽  
A. Gabiatti

Sign in / Sign up

Export Citation Format

Share Document