Hierarchical Optimal Operation for Integrated Energy System Based on Energy Hub

Author(s):  
Yongjie Zhong ◽  
Dongliang Xie ◽  
Mo Zhou ◽  
Yihe Wang ◽  
Yixin Hou ◽  
...  
2020 ◽  
Vol 12 (20) ◽  
pp. 8320
Author(s):  
Mohammad Hemmati ◽  
Mehdi Abapour ◽  
Behnam Mohammadi-Ivatloo ◽  
Amjad Anvari-Moghaddam

Coordinated multi-carrier energy systems with natural gas and electricity energies provide specific opportunities to improve energy efficiency and flexibility of the energy supply. The interdependency of electricity and natural gas networks faces multiple challenges from power and gas flow in corresponding feeders and pipes and connection points between two infrastructures’ points of view. However, the energy hub concepts as the fundamental concept of multi-carrier energy systems with multiple conversion, storage, and generation facilities can be considered as a connection point between electricity and gas grids. Hence, this paper proposes an optimal operation of coordinated gas and electricity distribution networks by considering interconnected energy hubs. The proposed energy hub is equipped with combined heat and power units, a boiler, battery energy storage, a heat pump, and a gas-fired unit to meet the heating and electrical load demands. The proposed model is formulated as a two-stage scenario-based stochastic model aiming to minimize total operational cost considering wind energy, electrical load, and real-time power price uncertainties. The proposed integrated energy system can participate in real-time and day-ahead power markets, as well as the gas market, to purchase its required energy. The AC-power flow and Weymouth equation are extended to describe power and gas flow in feeders and gas pipelines, respectively. Therefore, a realistic model for the integrated electricity and gas grids considering coupling constraints is satisfied. The proposed model is tested on the integrated energy system and consists of a 33-bus electrical network and a 6-node gas grid with multiple interconnected energy hubs, where the numerical results reveal the effectiveness of the proposed model.


Energies ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 2765 ◽  
Author(s):  
Yongjie Zhong ◽  
Dongliang Xie ◽  
Suwei Zhai ◽  
Yonghui Sun

The integrated energy system (IES) has the characteristic of energy system integrated/multi-energy coupling that involves heat, cooling, electricity, natural gas, and various other energy forms, which can maximize the synergistic effects and complementary benefits among various energy forms and their comprehensive utilization. In this paper, based on energy hub (EH), the day-ahead hierarchical steady state optimal operation for IES is discussed, in which the coupling natural gas system, electricity transmission system, and district heating system are all considered. Firstly, the model architecture of EH with diverse storage devices, renewable energy, and different energy conversion equipment is proposed and the steady state mathematical model of different energy networks in IES is developed, respectively. Secondly, the day-ahead operating cost of EH is minimized by an optimizing strategy to maximize the benefits of all kinds of energy demand users, where different types of energy power input into EH can be obtained. Then, the day-ahead optimal operation mode for IES considering minimization of operating fuel cost index is proposed via an energy management system, which provides various energy power data that are uploaded from EH. Finally, numerical results are presented to verify the effectiveness and usefulness of the day-ahead hierarchical optimal operation and steady state calculation analysis for IES, which could further illustrate that the proposed optimal operation can meet the requirements of practical engineering applications.


2021 ◽  
Vol 289 ◽  
pp. 116698
Author(s):  
Peng Li ◽  
Zixuan Wang ◽  
Jiahao Wang ◽  
Tianyu Guo ◽  
Yunxing Yin

2017 ◽  
Vol 142 ◽  
pp. 2683-2688 ◽  
Author(s):  
Yue Wang ◽  
Kai Hou ◽  
Hongjie Jia ◽  
Yunfei Mu ◽  
Lewei Zhu ◽  
...  

2021 ◽  
Vol 9 ◽  
Author(s):  
Jian Wang ◽  
Ning Xie ◽  
Valentin Ilea ◽  
Cristian Bovo ◽  
Hao Xin ◽  
...  

With the development of distributed generation and demand-side response, traditional consumers are now converted into prosumers that can actively produce and consume electricity. Moreover, with the help of energy integration technique, prosumers are encouraged to form a multi-energy community (MEC), which can increase their social welfare through inside multi-energy sharing. This paper proposes a day-ahead cooperative trading mechanism in a MEC that depends on an energy hub (EH) to couple electricity, natural gas, and heat for all prosumers. The model of the traditional uncooperative local integrated energy system (ULIES) is also built as a comparison. A satisfaction-based profit distribution mechanism is set according to prosumers’ feelings about the extra cost they save or extra profit they gain in MEC compared with that in ULIES. Finally, case studies are set to analyze the utility of MEC in enlarging social welfare, after considering the effects of prosumers’ electricity usage patterns and buy-and-sell prices in retail market. The results of satisfaction-based profit distribution are also analyzed to verify that it can save the cost or increase the profit of each prosumer and EH.


2020 ◽  
Vol 165 ◽  
pp. 01013
Author(s):  
Linfeng Wang ◽  
Kai Zhang ◽  
Nan Xu ◽  
Jingyan Wang ◽  
Danyang Zhang ◽  
...  

With the depletion of fossil energy and the popularity of renewable energy, a comprehensive energy system with the goal of improving system energy efficiency and consuming renewable energy is booming. Based on the combined heat, power, and heat generation, this paper builds a comprehensive energy system operation optimization model in conjunction with ground source heat pumps. It aims to find the optimal operation strategy based on the actual situation of the park’s load, equipment capacity, and energy prices. Using the linear programming method, a mathematical model with the best economic efficiency of the integrated energy system is established, the optimal operation strategy for a typical day is analyzed, and the annual operation is simulated. Finally, it compares with conventional energy supply methods and analyzes the contribution to the consumption of renewable energy.


2020 ◽  
Vol 1639 ◽  
pp. 012061
Author(s):  
Shouqiang Li ◽  
Wenxia Liu ◽  
Jing Wang ◽  
Zongqi Liu

Sign in / Sign up

Export Citation Format

Share Document