A Double-ended Contactless Current Traveling Waves Scheme for Fault Location in Overhead Transmission Lines

Author(s):  
Patrick Nyaaba Ayambire ◽  
Qi Huang ◽  
Olusola Bamisile ◽  
Paul Oswald Kwasi Anane ◽  
Albert K. Awopone
2014 ◽  
Vol 960-961 ◽  
pp. 1100-1103
Author(s):  
Guang Bin Zhang ◽  
Hong Chun Shu ◽  
Ji Lai Yu

Wavefront identification is important for traveling based fault location. In order to improve its reliability, a novel wavefront identification method based on Harris corner detector has been proposed in this paper. The principle of single-ended traveling wave fault location was briefly introduced at first, and the features of wavefronts generated by faults on transmission lines were analyzed. The arrival of traveling waves' wavefronts is considered as corner points in digital image of waveshape. The corner points can be extracted precisely by Harris corner detector, and both false corner points and non-fault caused disturbance can be eliminated according to the calculated distance between two neighbour corner points and the angle of the corner point. The proposed method is proved feasible and effective by digital simulated test.


Author(s):  
Yadi XIE ◽  
Baina HE ◽  
Lemiao WANG ◽  
Renzhuo JIANG ◽  
Yuyang ZHOU ◽  
...  

Abstract With the continuous expansion of the scale of power system, corridor resources of overhead transmission lines tend to be saturated in China, making AC/DC erection on the same tower a trend in future development. The AC/DC coupling effect will cause DC line to generate secondary arc current at the point of failure when transmission line fails, which affects the DC restart. On account of the mechanism of generating secondary arc current by AC/DC lines erected on the same tower, this paper uses PSCAD to establish simulation model for AC/DC erected on the same tower. And the effects of different fault locations, lengths of coupling sections, and different transposition modes of AC lines on the secondary arc current and recovery voltage of AC and DC lines are studied. The results show that secondary arc current on DC line is greatly affected by fault location and length of coupling line, and using different transposition modes of AC lines can reduce secondary arc current on the DC lines effectively. According to Yunguang UHV DC restart time sequence, setting the restart time sequence can increase the first restart deionization time to ensure the stable operation of the system.


Sign in / Sign up

Export Citation Format

Share Document