location identification
Recently Published Documents


TOTAL DOCUMENTS

257
(FIVE YEARS 71)

H-INDEX

17
(FIVE YEARS 4)

Sensors ◽  
2022 ◽  
Vol 22 (2) ◽  
pp. 622
Author(s):  
Yuting Zhu ◽  
Tim Giffney ◽  
Kean Aw

Dielectric elastomer (DE) sensors have been widely used in a wide variety of applications, such as in robotic hands, wearable sensors, rehabilitation devices, etc. A unique dielectric elastomer-based multimodal capacitive sensor has been developed to quantify the pressure and the location of any touch simultaneously. This multimodal sensor is a soft, flexible, and stretchable dielectric elastomer (DE) capacitive pressure mat that is composed of a multi-layer soft and stretchy DE sensor. The top layer measures the applied pressure, while the underlying sensor array enables location identification. The sensor is placed on a passive elastomeric substrate in order to increase deformation and optimize the sensor’s sensitivity. This DE multimodal capacitive sensor, with pressure and localization capability, paves the way for further development with potential applications in bio-mechatronics technology and other humanoid devices. The sensor design could be useful for robotic and other applications, such as fruit picking or as a bio-instrument for the diabetic insole.


2022 ◽  
Author(s):  
Sruthikeerthi Nandita ◽  
Goutham Zampani ◽  
Gokul S Krishnan ◽  
Gitakrishnan Ramadurai ◽  
Balaraman Ravindran

2021 ◽  
pp. 567-574
Author(s):  
S. Suguna Devi ◽  
A. Bhuvaneswari

Internet of Vehicles (IoV) is one of the developing models in the Vehicular adhoc networks (VANETs) with the vast improvement of communication technologies. In order to improve data transmission among the multiple communities without link breakage, a novel Trilateral Location Identified Maximum Weighted Directive Spanning Tree (TLIMWDST) technique is introduced. The proposed TLIMWDST technique consists of two major phases, namely location identification and optimal path identification to improve the reliability of data transmission from source vehicle to destination vehicle. In the first phase, the location of the neighboring vehicles is identified by applying a trilateration technique.  After the location identification, an optimal route path between the source and destination is identified using Maximum Weighted Directive Spanning Tree (MWDST) through the intermediate nodes. The performance of the TLIMWDST technique is assessed through simulation  as compared to the previous path selection techniques in terms of different routing metrics such as packet delivery ratio, packet loss rate, end-to-end delay and throughput with respect to the number of data packets.  


Energies ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 6359
Author(s):  
Sukjoon Oh ◽  
Suyeon Ham ◽  
Seongjin Lee

This paper presents improved methods to detect cracks and thermal leakage in building envelopes using unmanned aerial vehicles (UAV) (i.e., drones) with video camcorders and/or infrared cameras. Three widely used contour detectors of Sobel, Laplacian, and Canny algorithms were compared to find a better solution with low computational overhead. Furthermore, a scheme using frame-based location identification was developed to effectively utilize the existing approach by finding the current location of the drone-assisted image frame. The results showed a simplified drone-assisted scheme along with automation, higher accuracy, and better speed while using lower battery energy. Furthermore, this paper found that the cost-effective drone with the attached equipment generated accurate results without using an expensive drone. The new scheme of this paper will contribute to automated anomaly detection, energy auditing, and commissioning for sustainably built environments.


2021 ◽  
Author(s):  
Anushika Lakmini ◽  
L.P.M.A Liyanage ◽  
Sahras Hamsa ◽  
A.L.A.P.A Kumara ◽  
M.A.U.S Navaratne ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document