ARSOCCER: Development of a Multiplayer Real Time Videogame with Augmented Reality and Knowledge Based Agents

Author(s):  
Diego Jara ◽  
Francis Marquez ◽  
Alfredo Barrientos
2020 ◽  
pp. 147592172097698
Author(s):  
Shaohan Wang ◽  
Sakib Ashraf Zargar ◽  
Fuh-Gwo Yuan

A two-stage knowledge-based deep learning algorithm is presented for enabling automated damage detection in real-time using the augmented reality smart glasses. The first stage of the algorithm entails the identification of damage prone zones within the region of interest. This requires domain knowledge about the damage as well as the structure being inspected. In the second stage, automated damage detection is performed independently within each of the identified zones starting with the one that is the most damage prone. For real-time visual inspection enhancement using the augmented reality smart glasses, this two-stage approach not only ensures computational feasibility and efficiency but also significantly improves the probability of detection when dealing with structures with complex geometric features. A pilot study is conducted using hands-free Epson BT-300 smart glasses during which two distinct tasks are performed: First, using a single deep learning model deployed on the augmented reality smart glasses, automatic detection and classification of corrosion/fatigue, which is the most common cause of failure in high-strength materials, is performed. Then, in order to highlight the efficacy of the proposed two-stage approach, the more challenging task of defect detection in a multi-joint bolted region is addressed. The pilot study is conducted without any artificial control of external conditions like acquisition angles, lighting, and so on. While automating the visual inspection process is not a new concept for large-scale structures, in most cases, assessment of the collected data is performed offline. The algorithms/techniques used therein cannot be implemented directly on computationally limited devices such as the hands-free augmented reality glasses which could then be used by inspectors in the field for real-time assistance. The proposed approach serves to overcome this bottleneck.


2015 ◽  
Vol 6 (2) ◽  
Author(s):  
Rujianto Eko Saputro ◽  
Dhanar Intan Surya Saputra
Keyword(s):  

Media pembelajaran ternyata selalu mengikuti perkembangan teknologi yangada, mulai dari teknologi cetak, audio visual, komputer sampai teknologi gabunganantara teknologi cetak dengan komputer. Saat ini media pembelajaran hasil gabunganteknologi cetak dan komputer dapat diwujudkan dengan media teknologi AugmentedReality (AR). Augmented Reality (AR) adalah teknologi yang digunakan untukmerealisasikan dunia virtual ke dalam dunia nyata secara real-time. Organ pencernaanmanusia terdiri atas Mulut, Kerongkongan atau esofagus, Lambung, Usus halus, danUsus besar. Media pembelajaran mengenal organ pencernaan manusia pada saat inisangat monoton, yaitu melalui gambar, buku atau bahkan alat proyeksi lainnya.Menggunakan Augmented Reality yang mampu merealisasikan dunia virtual ke dunianyata, dapat mengubah objek-objek tersebut menjadi objek 3D, sehingga metodepembelajaran tidaklah monoton dan anak-anak jadi terpacu untuk mengetahuinya lebihlanjut, seperti mengetahui nama organ dan keterangan dari masing-masing organtersebut.


2018 ◽  
Author(s):  
Kyle Plunkett

This manuscript provides two demonstrations of how Augmented Reality (AR), which is the projection of virtual information onto a real-world object, can be applied in the classroom and in the laboratory. Using only a smart phone and the free HP Reveal app, content rich AR notecards were prepared. The physical notecards are based on Organic Chemistry I reactions and show only a reagent and substrate. Upon interacting with the HP Reveal app, an AR video projection shows the product of the reaction as well as a real-time, hand-drawn curved-arrow mechanism of how the product is formed. Thirty AR notecards based on common Organic Chemistry I reactions and mechanisms are provided in the Supporting Information and are available for widespread use. In addition, the HP Reveal app was used to create AR video projections onto laboratory instrumentation so that a virtual expert can guide the user during the equipment setup and operation.


2021 ◽  
Vol 11 (11) ◽  
pp. 4758
Author(s):  
Ana Malta ◽  
Mateus Mendes ◽  
Torres Farinha

Maintenance professionals and other technical staff regularly need to learn to identify new parts in car engines and other equipment. The present work proposes a model of a task assistant based on a deep learning neural network. A YOLOv5 network is used for recognizing some of the constituent parts of an automobile. A dataset of car engine images was created and eight car parts were marked in the images. Then, the neural network was trained to detect each part. The results show that YOLOv5s is able to successfully detect the parts in real time video streams, with high accuracy, thus being useful as an aid to train professionals learning to deal with new equipment using augmented reality. The architecture of an object recognition system using augmented reality glasses is also designed.


Sign in / Sign up

Export Citation Format

Share Document