An Adaptive Kalman Filter for UAV Attitude Estimation

Author(s):  
Yang Luo ◽  
Guoliang Ye ◽  
Yongming Wu ◽  
Jianwen Guo ◽  
Jinglun Liang ◽  
...  
2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Zhankui Zeng ◽  
Shijie Zhang ◽  
Yanjun Xing ◽  
Xibin Cao

Based on magnetometer and gyro measurement, a sequential scheme is proposed to determine the orbit and attitude of small satellite simultaneously. In order to reduce the impact of orbital errors on attitude estimation, a robust adaptive Kalman filter is developed. It uses a scale factor and an adaptive factor, which are constructed by Huber function and innovation sequence, respectively, to adjust the covariance matrix of system state and observational noise, change the weights of predicted and measured parameters, get suitable Kalman filter gain and approximate optimal filtering results. Numerical simulations are carried out and the proposed filter is approved to be robust for the noise disturbance and parameter uncertainty and can provide higher accuracy attitude estimation.


2015 ◽  
Vol 29 (2) ◽  
pp. 479-488 ◽  
Author(s):  
Mariana N. Ibarra-Bonilla ◽  
P. Jorge Escamilla-Ambrosio ◽  
Juan Manuel Ramirez-Cortes

2013 ◽  
Vol 62 (2) ◽  
pp. 251-265 ◽  
Author(s):  
Piotr J. Serkies ◽  
Krzysztof Szabat

Abstract In the paper issues related to the design of a robust adaptive fuzzy estimator for a drive system with a flexible joint is presented. The proposed estimator ensures variable Kalman gain (based on the Mahalanobis distance) as well as the estimation of the system parameters (based on the fuzzy system). The obtained value of the time constant of the load machine is used to change the values in the system state matrix and to retune the parameters of the state controller. The proposed control structure (fuzzy Kalman filter and adaptive state controller) is investigated in simulation and experimental tests.


Sign in / Sign up

Export Citation Format

Share Document