vehicle platform
Recently Published Documents


TOTAL DOCUMENTS

133
(FIVE YEARS 51)

H-INDEX

11
(FIVE YEARS 2)

Electronics ◽  
2021 ◽  
Vol 10 (24) ◽  
pp. 3093
Author(s):  
Bai Li ◽  
Shiqi Tang ◽  
Youmin Zhang ◽  
Xiang Zhong

Infrared positioning is a critical module in an indoor autonomous vehicle platform. In an infrared positioning system, the ego vehicle is equipped with an infrared emitter while the infrared receivers are fixed onto the ceiling. The infrared positioning result is accurate only when the number of valid infrared receivers is more than three. An infrared receiver easily becomes invalid if it does not receive light from the infrared emitter due to indoor occlusions. This study proposes an occlusion-aware path planner that enables an autonomous vehicle to navigate toward the occlusion-free part of the drivable area. The planner consists of four layers. In layer one, a homotopic A* path is searched for in the 2D grid map to roughly connect the initial and goal points. In layer two, a curvature-continuous reference line is planned close to the A* path using numerical optimal control. In layer three, a Frenet frame is constructed along the reference line, followed by a search for an occlusion-aware path within that frame via dynamic programming. In layer four, a curvature-continuous path is optimized via quadratic programming within the Frenet frame. A path planned within the Frenet frame may violate the curvature bounds in a real-world Cartesian frame; thus, layer four is implemented through trial and error. Simulation results in CarSim software show that the derived paths reduce the poor positioning risk and are easily tracked by a controller.


Energies ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 8039
Author(s):  
Aws Khalil ◽  
Ahmed Abdelhamed ◽  
Girma Tewolde ◽  
Jaerock Kwon

For autonomous driving research, using a scaled vehicle platform is a viable alternative compared to a full-scale vehicle. However, using embedded solutions such as small robotic platforms with differential driving or radio-controlled (RC) car-based platforms can be limiting on, for example, sensor package restrictions or computing challenges. Furthermore, for a given controller, specialized expertise and abilities are necessary. To address such problems, this paper proposes a feasible solution, the Ridon vehicle, which is a spacious ride-on automobile with high-driving electric power and a custom-designed drive-by-wire system powered by a full-scale machine-learning-ready computer. The major objective of this paper is to provide a thorough and appropriate method for constructing a cost-effective platform with a drive-by-wire system and sensor packages so that machine-learning-based algorithms can be tested and deployed on a scaled vehicle. The proposed platform employs a modular and hierarchical software architecture, with microcontroller programs handling the low-level motor controls and a graphics processing unit (GPU)-powered laptop computer processing the higher and more sophisticated algorithms. The Ridon vehicle platform is validated by employing it in a deep-learning-based behavioral cloning study. The suggested platform’s affordability and adaptability would benefit broader research and the education community.


2021 ◽  
Vol 13 (23) ◽  
pp. 4792
Author(s):  
Marion Jaud ◽  
Guillaume Sicot ◽  
Guillaume Brunier ◽  
Emma Michaud ◽  
Nicolas Le Dantec ◽  
...  

Hyper-DRELIO (Hyperspectral DRone for Environmental and LIttoral Observations) is a custom, mini-UAV (unmanned aerial vehicle) platform (<20 kg), equipped with a light push broom hyperspectral sensor combined with a navigation module measuring position and orientation. Because of the particularities of UAV surveys (low flight altitude, small spatial scale, and high resolution), dedicated pre-processing methods have to be developed when reconstructing hyperspectral imagery. This article presents light, easy-implementation, in situ methods, using only two Spectralon® and a field spectrometer, allowing performance of an initial calibration of the sensor in order to correct “vignetting effects” and a field standardization to convert digital numbers (DN) collected by the hyperspectral camera to reflectance, taking into account the time-varying illumination conditions. Radiometric corrections are applied to a subset of a dataset collected above mudflats colonized by pioneer mangroves in French Guiana. The efficiency of the radiometric corrections is assessed by comparing spectra from Hyper-DRELIO imagery to in situ spectrometer measurements above the intertidal benthic biofilm and mangroves. The shapes of the spectra were consistent, and the spectral angle mapper (SAM) distance was 0.039 above the benthic biofilm and 0.159 above the mangroves. These preliminary results provide new perspectives for quantifying and mapping the benthic biofilm and mangroves at the scale of the Guianese intertidal mudbanks system, given their importance in the coastal food webs, biogeochemical cycles, and the sediment stabilization.


Sensors ◽  
2021 ◽  
Vol 21 (21) ◽  
pp. 7190
Author(s):  
Philip Matesanz ◽  
Timo Graen ◽  
Andrea Fiege ◽  
Michael Nolting ◽  
Wolfgang Nejdl

Automakers manage vast fleets of connected vehicles and face an ever-increasing demand for their sensor readings. This demand originates from many stakeholders, each potentially requiring different sensors from different vehicles. Currently, this demand remains largely unfulfilled due to a lack of systems that can handle such diverse demands efficiently. Vehicles are usually passive participants in data acquisition, each continuously reading and transmitting the same static set of sensors. However, in a multi-tenant setup with diverse data demands, each vehicle potentially needs to provide different data instead. We present a system that performs such vehicle-specific minimization of data acquisition by mapping individual data demands to individual vehicles. We collect personal data only after prior consent and fulfill the requirements of the GDPR. Non-personal data can be collected by directly addressing individual vehicles. The system consists of a software component natively integrated with a major automaker’s vehicle platform and a cloud platform brokering access to acquired data. Sensor readings are either provided via near real-time streaming or as recorded trip files that provide specific consistency guarantees. A performance evaluation with over 200,000 simulated vehicles has shown that our system can increase server capacity on-demand and process streaming data within 269 ms on average during peak load. The resulting architecture can be used by other automakers or operators of large sensor networks. Native vehicle integration is not mandatory; the architecture can also be used with retrofitted hardware such as OBD readers.


Sensors ◽  
2021 ◽  
Vol 21 (11) ◽  
pp. 3796
Author(s):  
Jose Antonio Solano-Perez ◽  
María-Teresa Martínez-Inglés ◽  
Jose-Maria Molina-Garcia-Pardo ◽  
Jordi Romeu ◽  
Lluis Jofre-Roca ◽  
...  

The current trend in vehicles is to integrate a wide number of antennae and sensors operating at a variety of frequencies for sensing and communications. The integration of these antennae and sensors in the vehicle platform is complex because of the way in which the antenna radiation patterns interact with the vehicle structure and other antennae/sensors. Consequently, there is a need to study the radiation pattern of each antenna or, alternatively, the currents induced on the surface of the vehicle to optimize the integration of multiple antennae. The novel concept of differential imaging represents one method by which it is possible to obtain the surface current distribution without introducing any perturbing probe. The aim of this study was to develop and confirm the assumptions that underpin differential imaging by means of full-wave electromagnetic simulation, thereby providing additional verification of the concept. The simulation environment and parameters were selected to replicate the conditions in which real measurements were taken in previous studies. The simulations were performed using Ansys HFSS simulation software. The results confirm that the approximations are valid, and the differential currents are representative of the induced surface currents generated by a monopole positioned on the top of a vehicle.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Qingying Ge ◽  
Aijuan Li ◽  
Shaohua Li ◽  
Haiping Du ◽  
Xin Huang ◽  
...  

In this paper, an improved bidirectional RRT ∗ vehicle path planning method for smart vehicle is proposed. In this method, the resultant force of the artificial potential field is used to determine the search direction to improve the search efficiency. Different kinds of constraints are considered in the method, including the vehicle constraints and the vehicle driving environment constraints. The collision detection based on separating axis theorem is used to detect the collision between the vehicle and the obstacles to improve the planning efficiency. The cubic B-spline curve is used to optimize the path to make the path’s curvature continuous. Both simulation and experiment are implemented to verify the proposed improved bidirectional RRT ∗ method. In the simulation analysis, this paper’s method can generate the smoothest path and takes the shortest time compared with the other two methods and it can be adaptive to the complicated environment. In the real vehicle experiment, we can see from the test results that this paper’s method can be applied in practice on the smart electric vehicle platform; compared with others’ algorithm, this paper’s algorithm can generate shortest and smoothest path.


Sign in / Sign up

Export Citation Format

Share Document