scholarly journals Classification of driver fatigue in an electroencephalography-based countermeasure system with source separation module

Author(s):  
Rifai Chai ◽  
Ganesh R. Naik ◽  
Yvonne Tran ◽  
Sai Ho Ling ◽  
Ashley Craig ◽  
...  
2014 ◽  
Vol 556-562 ◽  
pp. 2748-2751
Author(s):  
Hong Li Wang ◽  
Bing Xu ◽  
Xue Dong Xue ◽  
Kan Cheng

One method for diagnosis of faults with generator rotor is contrived by combining local wave method and blind source separation. Time-frequency image varies with local wave of different fault signals, and this feature is applied to identify different faults. In order to realize automatic classification of faults, blind source separation is employed for separation of independent components in time-frequency image of local wave of different fault signals, so as to derive projection coefficients for a set of source images. On the basis of this, automatic classification of faults is realized with probability nerve network. Taking fault signal of rotor as an example, this method is investigated, and the validity is proved by experimental results.


2010 ◽  
Vol 22 (04) ◽  
pp. 293-300 ◽  
Author(s):  
Sridhar P. Arjunan ◽  
Dinesh K. Kumar ◽  
Ganesh R. Naik

Classification of surface electromyogram (sEMG) for identification of hand and finger flexions has a number of applications such as sEMG-based controllers for near elbow amputees and human-computer interface devices for the elderly. However, the classification of an sEMG becomes difficult when the level of muscle contraction is low and when there are multiple active muscles. The presence of noise and crosstalk from closely located and simultaneously active muscles is exaggerated when muscles are weakly active such as during sustained wrist and finger flexion and of people with neuropathological disorders or who are amputees. This paper reports analysis of fractal length and fractal dimension of two channels to obtain accurate identification of hand and finger flexion. An alternate technique, which consists of source separation of an sEMG to obtain individual muscle activity to identify the finger and hand flexion actions, is also reported. The results show that both the fractal features and muscle activity obtained using modified independent component analysis of an sEMG from the forearm can accurately identify a set of finger and wrist flexion-based actions even when the muscle activity is very weak.


2016 ◽  
Vol 693 ◽  
pp. 1350-1356 ◽  
Author(s):  
Hong Kun Li ◽  
Hong Yi Liu ◽  
Chang Bo He

Blind source separation (BSS) is an effective method for the fault diagnosis and classification of mixture signals with multiple vibration sources. The traditional BSS algorithm is applicable to the number of observed signals is no less to the source signals. But BSS performance is limit for the under-determined condition that the number of observed signals is less than source signals. In this research, we provide an under-determined BSS method based on the advantage of time-frequency analysis and empirical mode decomposition (EMD). It is suitable for weak feature extraction and pattern recognition. Firstly, vibration signal is decomposed by using EMD. The number of source signals are estimated and the optimal observed signals are selected according to the EMD. Then, the vibration signal and the optimal observed signals are used to construct the multi-channel observed signals. In the end, BSS based on time-frequency analysis are used to the constructed signals. Gearbox signals are used to verify the effectiveness of this method.


2016 ◽  
Vol 139 (4) ◽  
pp. 2224-2224
Author(s):  
Juan Yang ◽  
Karim G. Sabra ◽  
Feng Xu ◽  
Xudong An ◽  
Hao Tang ◽  
...  

Author(s):  
Yang Zheng ◽  
Xiaogang Hu

A reliable neural-machine interface is essential for humans to intuitively interact with advanced robotic hands in an unconstrained environment. Existing neural decoding approaches utilize either discrete hand gesture-based pattern recognition or continuous force decoding with one finger at a time. We developed a neural decoding technique that allowed continuous and concurrent prediction of forces of different fingers based on spinal motoneuron firing information. High-density skin-surface electromyogram (HD-EMG) signals of finger extensor muscle were recorded, while human participants produced isometric flexion forces in a dexterous manner (i.e. produced varying forces using either a single finger or multiple fingers concurrently). Motoneuron firing information was extracted from the EMG signals using a blind source separation technique, and each identified neuron was further classified to be associated with a given finger. The forces of individual fingers were then predicted concurrently by utilizing the corresponding motoneuron pool firing frequency of individual fingers. Compared with conventional approaches, our technique led to better prediction performances, i.e. a higher correlation ([Formula: see text] versus [Formula: see text]), a lower prediction error ([Formula: see text]% MVC versus [Formula: see text]% MVC), and a higher accuracy in finger state (rest/active) prediction ([Formula: see text]% versus [Formula: see text]%). Our decoding method demonstrated the possibility of classifying motoneurons for different fingers, which significantly alleviated the cross-talk issue of EMG recordings from neighboring hand muscles, and allowed the decoding of finger forces individually and concurrently. The outcomes offered a robust neural-machine interface that could allow users to intuitively control robotic hands in a dexterous manner.


2013 ◽  
Vol 2013 ◽  
pp. 1-12 ◽  
Author(s):  
David Maunder ◽  
Julien Epps ◽  
Eliathamby Ambikairajah ◽  
Branko Celler

Despite recent advances in the area of home telemonitoring, the challenge of automatically detecting the sound signatures of activities of daily living of an elderly patient using nonintrusive and reliable methods remains. This paper investigates the classification of eight typical sounds of daily life from arbitrarily positioned two-microphone sensors under realistic noisy conditions. In particular, the role of several source separation and sound activity detection methods is considered. Evaluations on a new four-microphone database collected under four realistic noise conditions reveal that effective sound activity detection can produce significant gains in classification accuracy and that further gains can be made using source separation methods based on independent component analysis. Encouragingly, the results show that recognition accuracies in the range 70%–100% can be consistently obtained using different microphone-pair positions, under all but the most severe noise conditions.


Sign in / Sign up

Export Citation Format

Share Document