Monte Carlo validation of spike-timing-dependent plasticity identification from spiking activity

Author(s):  
Brian S. Robinson ◽  
Theodore W. Berger ◽  
Dong Song
2016 ◽  
Vol 28 (11) ◽  
pp. 2320-2351 ◽  
Author(s):  
Brian S. Robinson ◽  
Theodore W. Berger ◽  
Dong Song

Characterization of long-term activity-dependent plasticity from behaviorally driven spiking activity is important for understanding the underlying mechanisms of learning and memory. In this letter, we present a computational framework for quantifying spike-timing-dependent plasticity (STDP) during behavior by identifying a functional plasticity rule solely from spiking activity. First, we formulate a flexible point-process spiking neuron model structure with STDP, which includes functions that characterize the stationary and plastic properties of the neuron. The STDP model includes a novel function for prolonged plasticity induction, as well as a more typical function for synaptic weight change based on the relative timing of input-output spike pairs. Consideration for system stability is incorporated with weight-dependent synaptic modification. Next, we formalize an estimation technique using a generalized multilinear model (GMLM) structure with basis function expansion. The weight-dependent synaptic modification adds a nonlinearity to the model, which is addressed with an iterative unconstrained optimization approach. Finally, we demonstrate successful model estimation on simulated spiking data and show that all model functions can be estimated accurately with this method across a variety of simulation parameters, such as number of inputs, output firing rate, input firing type, and simulation time. Since this approach requires only naturally generated spikes, it can be readily applied to behaving animal studies to characterize the underlying mechanisms of learning and memory.


2006 ◽  
Vol 18 (10) ◽  
pp. 2414-2464 ◽  
Author(s):  
Peter A. Appleby ◽  
Terry Elliott

In earlier work we presented a stochastic model of spike-timing-dependent plasticity (STDP) in which STDP emerges only at the level of temporal or spatial synaptic ensembles. We derived the two-spike interaction function from this model and showed that it exhibits an STDP-like form. Here, we extend this work by examining the general n-spike interaction functions that may be derived from the model. A comparison between the two-spike interaction function and the higher-order interaction functions reveals profound differences. In particular, we show that the two-spike interaction function cannot support stable, competitive synaptic plasticity, such as that seen during neuronal development, without including modifications designed specifically to stabilize its behavior. In contrast, we show that all the higher-order interaction functions exhibit a fixed-point structure consistent with the presence of competitive synaptic dynamics. This difference originates in the unification of our proposed “switch” mechanism for synaptic plasticity, coupling synaptic depression and synaptic potentiation processes together. While three or more spikes are required to probe this coupling, two spikes can never do so. We conclude that this coupling is critical to the presence of competitive dynamics and that multispike interactions are therefore vital to understanding synaptic competition.


2015 ◽  
Vol 109 (6) ◽  
pp. 701-714 ◽  
Author(s):  
Carlo R. Laing ◽  
Ioannis G. Kevrekidis

Sign in / Sign up

Export Citation Format

Share Document