Specific CA3 neurons decode neural information of dentate granule cells evoked by paired-pulse stimulation in co-cultured networks

Author(s):  
Daniele Poli ◽  
Thomas B. DeMarse ◽  
Bruce C. Wheeler ◽  
Gregory J. Brewer
1998 ◽  
Vol 798 (1-2) ◽  
pp. 109-118 ◽  
Author(s):  
Eugene M Howard ◽  
Tian-Ming Gao ◽  
William A Pulsinelli ◽  
Zao C Xu

1998 ◽  
Vol 80 (6) ◽  
pp. 2860-2869 ◽  
Author(s):  
T. M. Gao ◽  
E. M. Howard ◽  
Z. C. Xu

Gao, T. M., E. M. Howard, and Z. C. Xu. Transient neurophysiological changes in CA3 neurons and dentate granule cells after severe forebrain ischemia in vivo. J. Neurophysiol. 80: 2860–2869, 1998. The spontaneous activities, evoked synaptic responses, and membrane properties of CA3 pyramidal neurons and dentate granule cells in rat hippocampus were compared before ischemia and ≤7 days after reperfusion with intracellular recording and staining techniques in vivo. A four-vessel occlusion method was used to induce ∼14 min of ischemic depolarization. No significant change in spontaneous firing rate was observed in both cell types after reperfusion. The amplitude and slope of excitatory postsynaptic potentials (EPSPs) in CA3 neurons decreased to 50% of control values during the first 12 h reperfusion and returned to preischemic levels 24 h after reperfusion. The amplitude and slope of EPSPs in granule cells slightly decreased 24–36 h after reperfusion. The amplitude of inhibitory postsynaptic potentials in CA3 neurons transiently increased 24 h after reperfusion, whereas that in granule cells showed a transient decrease 24–36 h after reperfusion. The duration of spike width of CA3 and granule cells became longer than that of control values during the first 12 h reperfusion. The spike threshold of both cell types significantly increased 24–36 h after reperfusion, whereas the frequency of repetitive firing evoked by depolarizing current pulse was decreased during this period. No significant change in rheobase and input resistance was observed in CA3 neurons. A transient increase in rheobase and a transient decrease in input resistance were detected in granule cells 24–36 h after reperfusion. The amplitude of fast afterhyperpolarization in both cell types increased for 2 days after ischemia and returned to normal values 7 days after reperfusion. The results from this study indicate that the neuronal excitability and synaptic transmission in CA3 and granule cells are transiently suppressed after severe forebrain ischemia. The depression of synaptic transmission and neuronal excitability may provide protection for neurons after ischemic insult.


2005 ◽  
Vol 48 (4) ◽  
pp. 584-596 ◽  
Author(s):  
Michael J. Thomas ◽  
Manuel Mameli ◽  
Mario Carta ◽  
C. Fernando Valenzuela ◽  
Pui-Kai Li ◽  
...  

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Qingying Tang ◽  
Shuxia Chen ◽  
Hui Wu ◽  
Honghua Song ◽  
Yongjun Wang ◽  
...  

AbstractCongenital hypothyroidism (CH), a common neonatal endocrine disorder, can result in cognitive deficits if delay in diagnose and treatment. Dentate gyrus (DG) is the severely affected subregion of the hippocampus by the CH, where the dentate granule cells (DGCs) reside in. However, how CH impairs the cognitive function via affecting DGCs and the underlying mechanisms are not fully elucidated. In the present study, the CH model of rat pups was successfully established, and the aberrant dendrite growth of the DGCs and the impaired cognitive behaviors were observed in the offspring. Transcriptome analysis of hippocampal tissues following rat CH successfully identified that calcium/calmodulin-dependent protein kinase IV (CaMKIV) was the prominent regulator involved in mediating deficient growth of DGC dendrites. CaMKIV was shown to be dynamically regulated in the DG subregion of the rats following drug-induced CH. Interference of CaMKIV expression in the primary DGCs significantly reduced the spine density of dendrites, while addition of T3 to the primary DGCs isolated from CH pups could facilitate the spine growth of dendrites. Insights into relevant mechanisms revealed that CH-mediated CaMKIV deficiency resulted in the significant decrease of phosphorylated CREB in DGCs, in association with the abnormality of dendrites. Our results have provided a distinct cell type in hippocampus that is affected by CH, which would be beneficial for the treatment of CH-induced cognitive deficiency.


Sign in / Sign up

Export Citation Format

Share Document