Transient Neurophysiological Changes in CA3 Neurons and Dentate Granule Cells After Severe Forebrain Ischemia In Vivo

1998 ◽  
Vol 80 (6) ◽  
pp. 2860-2869 ◽  
Author(s):  
T. M. Gao ◽  
E. M. Howard ◽  
Z. C. Xu

Gao, T. M., E. M. Howard, and Z. C. Xu. Transient neurophysiological changes in CA3 neurons and dentate granule cells after severe forebrain ischemia in vivo. J. Neurophysiol. 80: 2860–2869, 1998. The spontaneous activities, evoked synaptic responses, and membrane properties of CA3 pyramidal neurons and dentate granule cells in rat hippocampus were compared before ischemia and ≤7 days after reperfusion with intracellular recording and staining techniques in vivo. A four-vessel occlusion method was used to induce ∼14 min of ischemic depolarization. No significant change in spontaneous firing rate was observed in both cell types after reperfusion. The amplitude and slope of excitatory postsynaptic potentials (EPSPs) in CA3 neurons decreased to 50% of control values during the first 12 h reperfusion and returned to preischemic levels 24 h after reperfusion. The amplitude and slope of EPSPs in granule cells slightly decreased 24–36 h after reperfusion. The amplitude of inhibitory postsynaptic potentials in CA3 neurons transiently increased 24 h after reperfusion, whereas that in granule cells showed a transient decrease 24–36 h after reperfusion. The duration of spike width of CA3 and granule cells became longer than that of control values during the first 12 h reperfusion. The spike threshold of both cell types significantly increased 24–36 h after reperfusion, whereas the frequency of repetitive firing evoked by depolarizing current pulse was decreased during this period. No significant change in rheobase and input resistance was observed in CA3 neurons. A transient increase in rheobase and a transient decrease in input resistance were detected in granule cells 24–36 h after reperfusion. The amplitude of fast afterhyperpolarization in both cell types increased for 2 days after ischemia and returned to normal values 7 days after reperfusion. The results from this study indicate that the neuronal excitability and synaptic transmission in CA3 and granule cells are transiently suppressed after severe forebrain ischemia. The depression of synaptic transmission and neuronal excitability may provide protection for neurons after ischemic insult.

2018 ◽  
Vol 115 (19) ◽  
pp. 5004-5009 ◽  
Author(s):  
Junsung Woo ◽  
Joo Ok Min ◽  
Dae-Si Kang ◽  
Yoo Sung Kim ◽  
Guk Hwa Jung ◽  
...  

Tonic inhibition in the brain is mediated through an activation of extrasynaptic GABAA receptors by the tonically released GABA, resulting in a persistent GABAergic inhibitory action. It is one of the key regulators for neuronal excitability, exerting a powerful action on excitation/inhibition balance. We have previously reported that astrocytic GABA, synthesized by monoamine oxidase B (MAOB), mediates tonic inhibition via GABA-permeable bestrophin 1 (Best1) channel in the cerebellum. However, the role of astrocytic GABA in regulating neuronal excitability, synaptic transmission, and cerebellar brain function has remained elusive. Here, we report that a reduction of tonic GABA release by genetic removal or pharmacological inhibition of Best1 or MAOB caused an enhanced neuronal excitability in cerebellar granule cells (GCs), synaptic transmission at the parallel fiber-Purkinje cell (PF-PC) synapses, and motor performance on the rotarod test, whereas an augmentation of tonic GABA release by astrocyte-specific overexpression of MAOB resulted in a reduced neuronal excitability, synaptic transmission, and motor performance. The bidirectional modulation of astrocytic GABA by genetic alteration of Best1 or MAOB was confirmed by immunostaining and in vivo microdialysis. These findings indicate that astrocytes are the key player in motor coordination through tonic GABA release by modulating neuronal excitability and could be a good therapeutic target for various movement and psychiatric disorders, which show a disturbed excitation/inhibition balance.


1989 ◽  
Vol 62 (4) ◽  
pp. 882-895 ◽  
Author(s):  
E. Cherubini ◽  
Y. Ben-Ari ◽  
K. Krnjevic

1. The reversible blocking effect of brief anoxia (2-4 min) on synaptic transmission was studied in submerged hippocampal slices (kept mostly at 34 degrees), obtained from adult (greater than 120 g) and very young (6-50 g) Wistar rats. Excitatory postsynaptic potentials (EPSPs) were recorded with extra- and intracellular electrodes, sometimes simultaneously: in CA1, they were evoked by stratum radiation stimulation, in CA3 by hilar stimulation. 2. In slices from adults, EPSPs in CA1 were depressed by 90% after 2 min of anoxia, and postanoxic recovery was relatively slow (one-half recovery times 4.0 +/- 0.23 min, mean +/- SE). EPSPs in CA3 were consistently more resistant, especially those generated by mossy fibers; after 2 min of anoxia, these were reduced by only 14.7 +/- 5.4%. 3. In newborn animals (PN1-4), both intra- and extracellular EPSPs (but no population spikes) could be recorded in CA1. Although smaller and more fatigable than in the adult, they were much more resistant to anoxia, after 2 min being reduced by only 44.1 +/- 8.8%; and they were not abolished even after 6-7 min. On the other hand, postanoxic recovery was very rapid, being one-half complete in 2.4 +/- 0.48 min. Only large and very prolonged (giant) depolarizing PSPs [probably inhibitory postsynaptic potentials (IPSPs)] could be recorded in CA3 neurons; they were rapidly blocked by anoxia. 4. In older pups (PN6-21), the CA1 EPSPs became progressively more sensitive to anoxia. At the end of the second week, they were as rapidly blocked as in slices from adults; but postanoxic recovery remained quicker throughout this period. In CA3, EPSPs could now be evoked that were as resistant to anoxia as in adult slices. 5. In both CA1 and CA3 neurons from adult rats, anoxia (for 2-3 min) reduced the input resistance (RN) by 45.7 +/- 6.25%. In CA1 neurons, there was most often some hyperpolarization (-7.2 +/- 1.8 mV), which was less consistent in CA3 cells. The return of O2 typically led to a second (postanoxic) phase of hyperpolarization (-7.9 +/- 1.93 mV). 6. At PN1-4, the resting potential (Vm) of most cells had to be maintained by current injection; the input resistance (RN) of CA1 neurons was 70% higher than in mature cells, and there was little time-dependent inward rectification. Anoxia produced no regular changes in Vm, and reductions in RN were very small (by only 9.6 +/- 5.0%). A postanoxic hyperpolarization was seen in only 2 neurons out of 11.(ABSTRACT TRUNCATED AT 400 WORDS)


1998 ◽  
Vol 798 (1-2) ◽  
pp. 109-118 ◽  
Author(s):  
Eugene M Howard ◽  
Tian-Ming Gao ◽  
William A Pulsinelli ◽  
Zao C Xu

Author(s):  
R.V.W. Dimlich ◽  
M.H. Biros

Although a previous study in this laboratory determined that Purkinje cells of the rat cerebellum did not appear to be damaged following 30 min of forebrain ischemia followed by 30 min of reperfusion, it was suggested that an increase in rough endoplasmic reticulum (RER) and/or polysomes had occurred in these cells. The primary objective of the present study was to morphometrically determine whether or not this increase had occurred. In addition, since there is substantial evidence that glial cells may be affected by ischemia earlier than other cell types, glial cells also were examined. To ascertain possible effects on other cerebellar components, granule cells and neuropil near Purkinje cells as well as neuropil in the molecular layer also were evaluated in this investigation.


2011 ◽  
Vol 31 (11) ◽  
pp. 4345-4354 ◽  
Author(s):  
B. W. Luikart ◽  
E. Schnell ◽  
E. K. Washburn ◽  
A. L. Bensen ◽  
K. R. Tovar ◽  
...  

2016 ◽  
Vol 19 (6) ◽  
pp. 788-791 ◽  
Author(s):  
J Tiago Gonçalves ◽  
Cooper W Bloyd ◽  
Matthew Shtrahman ◽  
Stephen T Johnston ◽  
Simon T Schafer ◽  
...  

2001 ◽  
Vol 280 (6) ◽  
pp. R1815-R1822 ◽  
Author(s):  
Javier E. Stern ◽  
Mike Ludwig

To study modulatory actions of nitric oxide (NO) on GABAergic synaptic activity in hypothalamic magnocellular neurons in the supraoptic nucleus (SON), in vitro and in vivo electrophysiological recordings were obtained from identified oxytocin and vasopressin neurons. Whole cell patch-clamp recordings were obtained in vitro from immunochemically identified oxytocin and vasopressin neurons. GABAergic synaptic activity was assessed in vitro by measuring GABAA miniature inhibitory postsynaptic currents (mIPSCs). The NO donor and precursor sodium nitroprusside (SNP) and l-arginine, respectively, increased the frequency and amplitude of GABAA mIPSCs in both cell types ( P ≤ 0.001). Retrodialysis of SNP (50 mM) onto the SON in vivo inhibited the activity of both neuronal types ( P ≤ 0.002), an effect that was reduced by retrodialysis of the GABAA-receptor antagonist bicuculline (2 mM, P≤ 0.001). Neurons activated by intravenous infusion of 2 M NaCl were still strongly inhibited by SNP. These results suggest that NO inhibition of neuronal excitability in oxytocin and vasopressin neurons involves pre- and postsynaptic potentiation of GABAergic synaptic activity in the SON.


2020 ◽  
Vol 14 ◽  
Author(s):  
Shelly Jones ◽  
Joel Zylberberg ◽  
Nathan Schoppa

A common feature of the primary processing structures of sensory systems is the presence of parallel output “channels” that convey different information about a stimulus. In the mammalian olfactory bulb, this is reflected in the mitral cells (MCs) and tufted cells (TCs) that have differing sensitivities to odors, with TCs being more sensitive than MCs. In this study, we examined potential mechanisms underlying the different responses of MCs vs. TCs. For TCs, we focused on superficial TCs (sTCs), which are a population of output TCs that reside in the superficial-most portion of the external plexiform layer, along with external tufted cells (eTCs), which are glutamatergic interneurons in the glomerular layer. Using whole-cell patch-clamp recordings in mouse bulb slices, we first measured excitatory currents in MCs, sTCs, and eTCs following olfactory sensory neuron (OSN) stimulation, separating the responses into a fast, monosynaptic component reflecting direct inputs from OSNs and a prolonged component partially reflecting eTC-mediated feedforward excitation. Responses were measured to a wide range of OSN stimulation intensities, simulating the different levels of OSN activity that would be expected to be produced by varying odor concentrations in vivo. Over a range of stimulation intensities, we found that the monosynaptic current varied significantly between the cell types, in the order of eTC > sTC > MC. The prolonged component was smaller in sTCs vs. both MCs and eTCs. sTCs also had much higher whole-cell input resistances than MCs, reflecting their smaller size and greater membrane resistivity. To evaluate how these different electrophysiological aspects contributed to spiking of the output MCs and sTCs, we used computational modeling. By exchanging the different cell properties in our modeled MCs and sTCs, we could evaluate each property's contribution to spiking differences between these cell types. This analysis suggested that the higher sensitivity of spiking in sTCs vs. MCs reflected both their larger monosynaptic OSN signal as well as their higher input resistance, while their smaller prolonged currents had a modest opposing effect. Taken together, our results indicate that both synaptic and intrinsic cellular features contribute to the production of parallel output channels in the olfactory bulb.


2019 ◽  
Vol 51 (10) ◽  
pp. 1-14 ◽  
Author(s):  
Seul-Yi Lee ◽  
Tuan Anh Vuong ◽  
Xianlan Wen ◽  
Hyeon-Ju Jeong ◽  
Hyun-Kyung So ◽  
...  

Abstract The sodium leak channel NALCN is a key player in establishing the resting membrane potential (RMP) in neurons and transduces changes in extracellular Ca2+ concentration ([Ca2+]e) into increased neuronal excitability as the downstream effector of calcium-sensing receptor (CaSR). Gain-of-function mutations in the human NALCN gene cause encephalopathy and severe intellectual disability. Thus, understanding the regulatory mechanisms of NALCN is important for both basic and translational research. This study reveals a novel mechanism for NALCN regulation by arginine methylation. Hippocampal dentate granule cells in protein arginine methyltransferase 7 (PRMT7)-deficient mice display a depolarization of the RMP, decreased threshold currents, and increased excitability compared to wild-type neurons. Electrophysiological studies combined with molecular analysis indicate that enhanced NALCN activities contribute to hyperexcitability in PRMT7−/− neurons. PRMT7 depletion in HEK293T cells increases NALCN activity by shifting the dose-response curve of NALCN inhibition by [Ca2+]e without affecting NALCN protein levels. In vitro methylation studies show that PRMT7 methylates a highly conserved Arg1653 of the NALCN gene located in the carboxy-terminal region that is implicated in CaSR-mediated regulation. A kinase-specific phosphorylation site prediction program shows that the adjacent Ser1652 is a potential phosphorylation site. Consistently, our data from site-specific mutants and PKC inhibitors suggest that Arg1653 methylation might modulate Ser1652 phosphorylation mediated by CaSR/PKC-delta, leading to [Ca2+]e-mediated NALCN suppression. Collectively, these data suggest that PRMT7 deficiency decreases NALCN methylation at Arg1653, which, in turn, decreases CaSR/PKC-mediated Ser1652 phosphorylation, lifting NALCN inhibition, thereby enhancing neuronal excitability. Thus, PRMT7-mediated NALCN inhibition provides a potential target for the development of therapeutic tools for neurological diseases.


Sign in / Sign up

Export Citation Format

Share Document