A CT reconstruction method based on constrained data fidelity range estimation

Author(s):  
Pengxin Cao ◽  
Jun Zhao ◽  
Jianqi Sun
2022 ◽  
Author(s):  
Yun Chen ◽  
Yao Lu ◽  
Xiangyuan Ma ◽  
Yuesheng Xu

Abstract The goal of this study is to develop a new computed tomography (CT) image reconstruction method, aiming at improving the quality of the reconstructed images of existing methods while reducing computational costs. Existing CT reconstruction is modeled by pixel-based piecewise constant approximations of the integral equation that describes the CT projection data acquisition process. Using these approximations imposes a bottleneck model error and results in a discrete system of a large size. We propose to develop a content-adaptive unstructured grid (CAUG) based regularized CT reconstruction method to address these issues. Specifically, we design a CAUG of the image domain to sparsely represent the underlying image, and introduce a CAUG-based piecewise linear approximation of the integral equation by employing a collocation method. We further apply a regularization defined on the CAUG for the resulting illposed linear system, which may lead to a sparse linear representation for the underlying solution. The regularized CT reconstruction is formulated as a convex optimization problem, whose objective function consists of a weighted least square norm based fidelity term, a regularization term and a constraint term. Here, the corresponding weighted matrix is derived from the simultaneous algebraic reconstruction technique (SART). We then develop a SART-type preconditioned fixed-point proximity algorithm to solve the optimization problem. Convergence analysis is provided for the resulting iterative algorithm. Numerical experiments demonstrate the outperformance of the proposed method over several existing methods in terms of both suppressing noise and reducing computational costs. These methods include the SART without regularization and with quadratic regularization on the CAUG, the traditional total variation (TV) regularized reconstruction method and the TV superiorized conjugate gradient method on the pixel grid.


Author(s):  
Michinori Hashimoto ◽  
Hideki Murakawa ◽  
Katsumi Sugimoto ◽  
Hitoshi Asano ◽  
Nobuyuki Takenaka ◽  
...  

Visualization of dynamic three-dimensional water behavior in a PEFC stack was carried out by neutron CT using a neutron image intensifier for clarifying water effects on performances of a Polymer Electrolyte Fuel Cell (PEFC) stack. Neutron radiography system at JRR-3 in Japan Atomic Energy Agency was used. An operating stack with three cells based on Japan Automobile Research Institute standard was visualized. A consecutive CT reconstruction method by rotating the fuel stack continuously was developed by using a neutron image intensifier and a C-MOS high speed video camera. The dynamic water behavior in channels in the operating PEFC stack was clearly visualized 15 sec in interval by the developed dynamic neutron CT system. From the CT reconstructed images, evaluation of water amount in each cell was carried out. It was shown that the water distribution in each cell was correlated well with power generation characteristics in each cell.


Sensors ◽  
2019 ◽  
Vol 19 (18) ◽  
pp. 3941 ◽  
Author(s):  
Li ◽  
Cai ◽  
Wang ◽  
Zhang ◽  
Tang ◽  
...  

Limited-angle computed tomography (CT) image reconstruction is a challenging problem in the field of CT imaging. In some special applications, limited by the geometric space and mechanical structure of the imaging system, projections can only be collected with a scanning range of less than 90°. We call this kind of serious limited-angle problem the ultra-limited-angle problem, which is difficult to effectively alleviate by traditional iterative reconstruction algorithms. With the development of deep learning, the generative adversarial network (GAN) performs well in image inpainting tasks and can add effective image information to restore missing parts of an image. In this study, given the characteristic of GAN to generate missing information, the sinogram-inpainting-GAN (SI-GAN) is proposed to restore missing sinogram data to suppress the singularity of the truncated sinogram for ultra-limited-angle reconstruction. We propose the U-Net generator and patch-design discriminator in SI-GAN to make the network suitable for standard medical CT images. Furthermore, we propose a joint projection domain and image domain loss function, in which the weighted image domain loss can be added by the back-projection operation. Then, by inputting a paired limited-angle/180° sinogram into the network for training, we can obtain the trained model, which has extracted the continuity feature of sinogram data. Finally, the classic CT reconstruction method is used to reconstruct the images after obtaining the estimated sinograms. The simulation studies and actual data experiments indicate that the proposed method performed well to reduce the serious artifacts caused by ultra-limited-angle scanning.


2019 ◽  
Vol 33 (06) ◽  
pp. 1950063 ◽  
Author(s):  
Shailendra Tiwari ◽  
Kavkirat Kaur ◽  
Yadunath Pathak ◽  
Shivendraa Shivani ◽  
Kuldeep Kaur

Computed Tomography (CT) is considered as a significant imaging tool for clinical diagnoses. Due to low-dose radiation in CT, the projection data is highly affected by Gaussian noise which may lead to blurred images, staircase effect, loss of basic fine structure and detailed information. Therefore, there is a demand for an approach that can eliminate noise and can provide high-quality images. To achieve this objective, this paper presents a new statistical image reconstruction method by proposing a suitable regularization approach. The proposed regularization is a hybrid approach of Complex Diffusion and Shock filter as a prior term. To handle the problem of prominent Gaussian noise as well as ill-posedness, the proposed hybrid regularization is further combined with the standard Maximum Likelihood Expectation Maximization (MLEM) reconstruction algorithm in an iterative manner and has been referred to as the proposed CT-Reconstruction (CT-R) algorithm here after. Besides, considering the large sizes of image data sets for medical imaging, distributed storage for images have been employed on Hadoop Distributed File System (HDFS) and the proposed MLEM algorithms have been deployed for improved performance.The proposed method has been evaluated on both the simulated and real test phantoms. The final results are compared with the other standard methods and it is observed that the proposed method has many desirable properties such as better noise robustness, less computational cost and enhanced denoising effect.


2018 ◽  
Vol 37 (6) ◽  
pp. 1407-1417 ◽  
Author(s):  
Zhicheng Zhang ◽  
Xiaokun Liang ◽  
Xu Dong ◽  
Yaoqin Xie ◽  
Guohua Cao

2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Lu-zhen Deng ◽  
Peng Feng ◽  
Mian-yi Chen ◽  
Peng He ◽  
Quang-sang Vo ◽  
...  

Compressive sensing (CS) theory has great potential for reconstructing CT images from sparse-views projection data. Currently, total variation (TV-) based CT reconstruction method is a hot research point in medical CT field, which uses the gradient operator as the sparse representation approach during the iteration process. However, the images reconstructed by this method often suffer the smoothing problem; to improve the quality of reconstructed images, this paper proposed a hybrid reconstruction method combining TV and non-aliasing Contourlet transform (NACT) and using the Split-Bregman method to solve the optimization problem. Finally, the simulation results show that the proposed algorithm can reconstruct high-quality CT images from few-views projection using less iteration numbers, which is more effective in suppressing noise and artefacts than algebraic reconstruction technique (ART) and TV-based reconstruction method.


2018 ◽  
Vol 26 (2) ◽  
pp. 189-208 ◽  
Author(s):  
Julia Mascolo-Fortin ◽  
Dmitri Matenine ◽  
Louis Archambault ◽  
Philippe Després

2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Luzhen Deng ◽  
Peng Feng ◽  
Mianyi Chen ◽  
Peng He ◽  
Biao Wei

Compressive Sensing (CS) theory has great potential for reconstructing Computed Tomography (CT) images from sparse-views projection data and Total Variation- (TV-) based CT reconstruction method is very popular. However, it does not directly incorporate prior images into the reconstruction. To improve the quality of reconstructed images, this paper proposed an improved TV minimization method using prior images and Split-Bregman method in CT reconstruction, which uses prior images to obtain valuable previous information and promote the subsequent imaging process. The images obtained asynchronously were registered via Locally Linear Embedding (LLE). To validate the method, two studies were performed. Numerical simulation using an abdomen phantom has been used to demonstrate that the proposed method enables accurate reconstruction of image objects under sparse projection data. A real dataset was used to further validate the method.


Sign in / Sign up

Export Citation Format

Share Document