Power systems modeling using fuzzy logic

Author(s):  
Anca Miron ◽  
M. Chindris ◽  
A. Cziker
2020 ◽  
Vol 12 (15) ◽  
pp. 6084
Author(s):  
Simona-Vasilica Oprea ◽  
Adela Bâra ◽  
Ștefan Preda ◽  
Osman Bulent Tor

Electricity generation from renewable energy sources (RES) has a common feature, that is, it is fluctuating, available in certain amounts and only for some periods of time. Consuming this electricity when it is available should be a primary goal to enhance operation of the RES-powered generating units which are particularly operating in microgrids. Heavily influenced by weather parameters, RES-powered systems can benefit from implementation of sensors and fuzzy logic systems to dynamically adapt electric loads to the volatility of RES. This study attempts to answer the following question: How to efficiently integrate RES to power systems by means of sustainable energy solutions that involve sensors, fuzzy logic, and categorization of loads? A Smart Adaptive Switching Module (SASM) architecture, which efficiently uses electricity generation of local available RES by gradually switching electric appliances based on weather sensors, power forecast, storage system constraints and other parameters, is proposed. It is demonstrated that, without SASM, the RES generation is supposed to be curtailed in some cases, e.g., when batteries are fully charged, even though the weather conditions are favourable. In such cases, fuzzy rules of SASM securely mitigate curtailment of RES generation by supplying high power non-traditional storage appliances. A numerical case study is performed to demonstrate effectiveness of the proposed SASM architecture for a RES system located in Hulubești (Dâmbovița), Romania.


2002 ◽  
Vol 372-376 ◽  
pp. 1462-1465 ◽  
Author(s):  
Hajime Miyauchi ◽  
Masayasu Ohnishi ◽  
Yasuhiro Yamasaki ◽  
Takashi Hiyama

Author(s):  
Abdul Rasheed ◽  
G. Keshava Rao

<p>Generally, the power systems are mainly effected by the continuous changes in operational requirement and increasing amount of distributed energy systems. This paper proposes a new concept of power-control strategies for a micro grid generation system for better transfer of power. The micro grids are obtained with the general renewable energy sources and this concept provides the maximum utilization of power at environmental free conditions with low losses; then the system efficiency is also improved. This paper proposes a single stage converter based micro grid to reduce the number of converters in an individual ac or dc grid. The proposed micro grid concept can work in both stand-alone mode and also in grid interfaced mode. The distortions that occur in power system due to changes in load or because of usage of non-linear loads, can be eliminated by using control strategies designed for shunt active hybrid filters such as series and shunt converters. A conventional Proportional Integral (PI) and Fuzzy Logic Controllers are used for power quality enhancement by reducing the distortions in the output power. The simulation results are compared among the two control strategies, that fuzzy logic controller and pi controller.</p>


Sign in / Sign up

Export Citation Format

Share Document