Improvement of Power Quality for Microgrid using Fuzzy Based UPQC Controller

Author(s):  
Abdul Rasheed ◽  
G. Keshava Rao

<p>Generally, the power systems are mainly effected by the continuous changes in operational requirement and increasing amount of distributed energy systems. This paper proposes a new concept of power-control strategies for a micro grid generation system for better transfer of power. The micro grids are obtained with the general renewable energy sources and this concept provides the maximum utilization of power at environmental free conditions with low losses; then the system efficiency is also improved. This paper proposes a single stage converter based micro grid to reduce the number of converters in an individual ac or dc grid. The proposed micro grid concept can work in both stand-alone mode and also in grid interfaced mode. The distortions that occur in power system due to changes in load or because of usage of non-linear loads, can be eliminated by using control strategies designed for shunt active hybrid filters such as series and shunt converters. A conventional Proportional Integral (PI) and Fuzzy Logic Controllers are used for power quality enhancement by reducing the distortions in the output power. The simulation results are compared among the two control strategies, that fuzzy logic controller and pi controller.</p>

2018 ◽  
Vol 7 (2.12) ◽  
pp. 214
Author(s):  
Te Jaswini Sarwade ◽  
V S. Jape ◽  
D G. Bharadwaj

The existence of non-standard currents, frequencies and voltages enhances the Power Quality (PQ) problems. Power consumed by the consumers and losses occurred in power system are deciding factors for the utility to determine the performance of the power system in terms of Power Quality. These Power Quality problems lead to failure of end user equipments as well as creates disturbances in power distribution network, thereby deteriorates residual life assessment of major equipments used in substation. The PQ problems can be characterized as voltage surges, sags, swells, harmonic distortions, etc. There are many reasons for the determination of Power Quality. The loads used by the consumers of electricity abnormally leads to deprove the Power Quality. Low power factor loads are taken care of by the utilities in the form of financial penalty. However, occurrence of harmonics, voltage swells and sags in the system is the most powerful reason behind degradation of Power Quality. To mitigate these issues, use of Custom Power Devices (CPD) in the distribution network is the most significant solution. Paper presents the design of the CPD like Dynamic Voltage Restorer (DVR) using two control strategies i.e. PI Controller and Fuzzy Logic Controller (FLC). MATLAB/SIMULINK is used to analyze the effectiveness of these control strategies. 


In power grid system power quality improvement plays an important role. Dual Voltage Source Inverter (DVSI) scheme is proposed to improve the aspects of Power and consistency of the micro grid system. Here we use Distributed Energy Resources (DER) for power exchange and unbalanced load compensation and nonlinear load in the system. Load sharing and power injections are done by grid interactive inverters in micro-grid. Based on Instantaneous Symmetrical Component Theory (ISCT), control algorithm is developed. For extraction of positive sequence voltage, dq0 transformation is done. An inverter connected to a 3- phase four- wire distribution combination is employed to test the managing strategy of the system. In this work we mainly focused on the assessment of overall performance of Proportional Integral (PI) controller and Fuzzy Logic Controller (FLC). Thus, the FLC provides increase in reliability, better performance of micro grid, less bandwidth requirements of inverters when compared to PI controller. The proposed system is validated by MATLAB simulation methods using PI controller and Fuzzy Logic Controller.


The distributed generation scheme with integration of renewable energy sources furnishes the feasible solution to acquire the stable power demand in grid-connected system under sudden load interruptions. Over the various compensation devices, the highly recognized multi-purpose Static Compensator is integrated to grid for attaining enhanced power quality features. A co-generation based grid-integrated renewable sources are used but, the output of these sources are maintained un-constant due to presence of variable source. In this paper, a novel current controller was developed to maintain output of co-generation system as constant and achieve the load demand continuously. But, this scheme has two major disadvantages, primary one is current controller prerequisites the traditional PI controller, which is controlled by intelligent based Fuzzy-Logic controller that is adopted. The second is, the regular 3-level voltage-source inverter is used in STATCOM which has square-wave output voltage requires high range of filter units, more common-mode voltage, high dv/dt stress, more switching losses, low efficiency, so on. These issues are counteracted by utilizing multilevel inverter with attractive modulation scheme. The performance evaluation of proposed Multilevel Inverter based STATCOM is verified by traditional PI and proposed Fuzzy-Logic current controller by using MATLAB/SIMULINK tool and results are conferred with comparisons


2019 ◽  
Vol 8 (2) ◽  
pp. 5604-5611

In this paper analysis of 3-Terminal and 5- Terminal hybrid(cross breed) micro grid using Fuzzy logic controller is proposed. The cascaded H-bridge interfaces between supply and DAB converter. The DAB(Dual Active Bridge) converter connects between cascaded H-bridge and load. By using Zero sequence voltage (ZSV) and inner current controller improvement in grid current and voltage balance are achieved. To boost the grid current and unbalance voltage, 49 ruled fuzzy controller based scheme is used. The analysis of the concept mainly deals with maintenance of power quality and uninterruption in power supply by tuning and Fuzzy logic controlling. The cascaded H-bridge hybrid micro grid with 3- terminal or 5 terminal would have better performance only if there is balanced voltage as well uninterrupted grid current. Fuzzy logic based controller performances are analyzed through simulation results.


Author(s):  
Muhammad Hamza Shahbaz ◽  
Arslan Ahmed Amin

: Because of the consistently expanding energy request, the introduction of a decentralized micro-grid based on energy resources will soon be the most exciting development in the power system. Micro-grids, which are mainly based on inverters, are becoming more popular as they can handle different forms of renewable energy effectively. However, one of the most challenging areas of research is their control. In the last few years, many control strategies have been developed. In this review, different control methods have been discussed that apply to the micro-grid system. Furthermore, the comparative analysis of classical and modern control strategies is also considered. This survey guides the new researchers about all available control strategies and room for improvement towards the optimal solution of the micro-grid control techniques. It also identifies several research gaps and future trends therein as well as provides a solution to manage problems in MGs. The strategies are then compared based on their applicability to different control requirements.


Electronics ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 892
Author(s):  
Poornima Udaychandra Panati ◽  
Sridhar Ramasamy ◽  
Mominul Ahsan ◽  
Julfikar Haider ◽  
Eduardo M.G. Rodrigues

The existing solutions for reducing total harmonic distortion (THD) using different control algorithms in shunt active power filters (SAPFs) are complex. This work proposes a split source inverter (SSI)-based SAPF for improving the power quality in a nonlinear load system. The advantage of the SSI topology is that it is of a single stage boost inverter with an inductor and capacitor where the conventional two stages with an intermediate DC-DC conversion stage is discarded. This research proposes inventive control schemes for SAPF having two control loops; the outer control loop regulates the DC link voltage whereas the inner current loop shapes the source current profile. The control mechanism implemented here is an effective, less complex, indirect scheme compared to the existing time domain control algorithms. Here, an intelligent fuzzy logic control regulates the DC link voltage which facilitates reference current generation for the current control scheme. The simulation of the said system was carried out in a MATLAB/Simulink environment. The simulations were carried out for different load conditions (RL and RC) using a fuzzy logic controller (FLC) and PI controllers in the outer loop (voltage control) and hysteresis current controller (HCC) and sinusoidal pulse width modulation (SPWM) in the inner loop (current control). The simulation results were extracted for dynamic load conditions and the results demonstrated that the THD can be reduced to 0.76% using a combination of SPWM and FLC. Therefore, the proposed system proved to be effective and viable for reducing THD. This system would be highly applicable for renewable energy power generation such as Photovoltaic (PV) and Fuel cell (FC).


This paper accord the Power Quality interpretation to make apparent for electricity consumers been made better power quality with application of DVR.Despite of advantages of DVR, it focuses full extent of the relatedness surrounded by loads, various power networks. DVR is most accepted power device which could be used for better solution for the disturbances of voltages in distribution systems for sensitive loads. For efficiency considerations, the DVR mostly hinge on an act of presenting the control modus, and can be harnessed to switching the inverters. Reliability of hysteresis voltage control with ease in operation under variable switching frequency can be trustworthy for a DVR can introduced and the proposed methods achieves good compensation of voltages under disturbances and can be seen by the simulation by using fuzzy logic controller.


2021 ◽  
Author(s):  
THIAGO FIGUEIREDO DO NASCIMENTO ◽  
ANDRES ORTIZ SALAZAR

The integration of distributed generation (DG) systems based on renewable energy sources (RES) by using power converters is an emerging technology in modern power systems. Among the control strategies applied to this new configuration, the virtual synchronous generator (VSG) approach has proven to be an attractive solution due providing suitable dynamic performance. Thus, this paper presents a dynamic analysis of gridtied converters controlled by using VSG concept. This analysis is based on a dynamic model that describes the DG power flow transient characteristics. Based on this model, the grid impedance parameters variation effects on the VSG controllers dynamic performance are discussed. Simulation results are presented to evaluate the effectiveness of the theoretical analysis performed.


Sign in / Sign up

Export Citation Format

Share Document