Embedded test & health monitoring strategies for bio-fluidic microystems

Author(s):  
H. Liu ◽  
A. Richardson ◽  
T.G. Harvey ◽  
T. Ryan ◽  
C. Pickering
2019 ◽  
Vol 4 (3) ◽  
pp. 56 ◽  
Author(s):  
Wouter Jan Klerk ◽  
Timo Schweckendiek ◽  
Frank den Heijer ◽  
Matthijs Kok

One of the most rapidly emerging measures in infrastructure asset management is Structural Health Monitoring (SHM), which aims at reducing uncertainty in structural performance by using monitoring equipment. As earthen flood defence structures typically have large strength uncertainties, such techniques can be particularly promising. However, insight in the key characteristics for successful SHM for flood defences is lacking, which hampers the practical implementation. In this study, we explore the benefits of pore pressure monitoring, one of the most promising SHM techniques for earthen flood defences. The approach is based on a Bayesian pre-posterior analysis, and results are evaluated based on the Value of Information (VoI) obtained from different monitoring strategies. We specifically investigate the effect on long-term reinforcement decisions. The results show that, next to the relative magnitude of reducible uncertainty, the combination of the probability of having a useful observation and the duration of a SHM effort determine the VoI. As it is likely that increasing loads due to climate change will result in more frequent future reinforcements, the influence of scenarios of different rates of increase in future loads is also investigated. It was found that, in all considered possible scenarios, monitoring yields a positive Value of Information, hence it is an economically efficient measure for flood defence asset management both now and in the future.


2017 ◽  
Vol 199 ◽  
pp. 3182-3187 ◽  
Author(s):  
Emilio Di Lorenzo ◽  
Simone Manzato ◽  
Bart Peeters ◽  
Francesco Marulo ◽  
Wim Desmet

2012 ◽  
Vol 188 ◽  
pp. 162-167 ◽  
Author(s):  
Chang Rong Yao ◽  
Ya Dong Li

The health monitoring for long-span bridges has become a hotspot in civil engineering. However, because of the complexity and particularity in bridge structure, monitoring variables are greatly influenced by environmental factors, which results in more difficulties in evaluation. The paper analyzes structural responses in different temperature fields, and the results show that effect of temperature difference among members and temperature gradient are remarkable on structures. The results may be of reference for formulation of bridge health monitoring strategies.


2018 ◽  
Vol 46 (5) ◽  
pp. 273-289
Author(s):  
Kathrin Herrmann ◽  
Paul Flecknell

Animal experimentation has been one of the most controversial areas of animal use, mainly due to the intentional harms inflicted upon the animals used. In an effort to reduce these harms, research on refinement has increased significantly over the past 20 years. However, the extent to which these efforts have helped to reduce the severity of the research procedures, and thus animal suffering, is uncertain. To provide an indication of the awareness and implementation of refinement methods, we reviewed the experimental techniques for 684 surgical interventions described in 506 animal research applications that had been sent to the German competent authorities for approval in 2010. In this paper, we describe and discuss the severity categorisation of the proposed surgeries and the planned health monitoring strategies. We found that the researchers frequently underestimated the levels of pain, suffering, distress and lasting harm that were to be inflicted on the animals. Furthermore, the planned health monitoring strategies were generally flawed. To ensure responsible treatment of animals and high-quality science, adequate training of research workers in recognising and alleviating animal suffering is essential.


Sign in / Sign up

Export Citation Format

Share Document