A Self-Equalization Band Pass Filter Having Arbitrary Complex Transmission Zeros

Author(s):  
Shigeki Takeda ◽  
Hsu. Jui-Pang
Frequenz ◽  
2018 ◽  
Vol 72 (9-10) ◽  
pp. 455-458 ◽  
Author(s):  
Vivek Singh ◽  
Vinay Kumar Killamsetty ◽  
Biswajeet Mukherjee

Abstract In this letter, a miniaturized Band Pass Filter (BPF) with wide stopband centered at 0.350 GHz for TETRA band applications is proposed using a Spiral Short Circuit quarter wavelength Stepped Impedance Resonator (SSC-SIR) and a stub loaded on feed line for enhancement of rejection level in the stopband. Spiral configuration of the resonator is used for the miniaturization of BPF. The proposed BPF provides a 3dB fractional bandwidth of 13.7 % with two transmission zeros in the lower and upper stopband to provide good selectivity and four transmission zeros which provide wide stopband upto 6.86f0. Proposed BPF has a very compact size of 0.064λg×0.062λg.


2020 ◽  
Vol 62 (11) ◽  
pp. 3514-3518
Author(s):  
Qian Xiao ◽  
Hui Wang ◽  
Zhuofan Jiao ◽  
Chang Jiang You ◽  
Jingye Cai

2018 ◽  
Vol 98 (2) ◽  
pp. 401-408 ◽  
Author(s):  
Ali Ebrahimi ◽  
Hossein Shamsi ◽  
Arash Ahmadi ◽  
Emad Ebrahimi

2018 ◽  
Vol 13 (06) ◽  
pp. P06020-P06020 ◽  
Author(s):  
A.A. Ibrahim ◽  
M.A. Abdalla ◽  
W.A.E. Ali

Frequenz ◽  
2017 ◽  
Vol 71 (7-8) ◽  
Author(s):  
Lei Chen ◽  
Xiao Yan Li ◽  
Feng Wei

AbstractA compact quad-band band-pass filter (BPF) based on stub loaded resonators (SLRs) with defected microstrip structure (DMS) is analyzed and designed in this paper. The proposed resonator is created by embedding DMS into the SLR and can achieve four narrow passbands. By employing the pseudointerdigital coupling structure between the two resonators, transmission zeros among each passband are generated to improve the passband selectivity and a high isolation is achieved. In order to validate its practicability, a prototype of a quad-band BPF centred at 1.57, 2.5, 4.3 and 5.2 GHz is designed and fabricated. The proposed filter is more compact due to the slow-wave characteristic of DMS. The simulated and measured results are in good agreement with each other. In addition, the DMS idea can be extended to the design of other microstrip passive devices.


Sign in / Sign up

Export Citation Format

Share Document