X-band compact low cost multi-channel radar prototype for short range high resolution 3D-InISAR

Author(s):  
Stefano Lischi ◽  
Riccardo Massini ◽  
Daniele Stagliano ◽  
Luca Musetti ◽  
Fabrizio Berizzi ◽  
...  
Keyword(s):  
Low Cost ◽  

Author(s):  
S. Shah ◽  
R. Notarpietro ◽  
S. Bertoldo ◽  
M. Branca ◽  
C. Lucianaz ◽  
...  


Author(s):  
Naveen Jaglan ◽  
Samir Dev Gupta ◽  
Binod Kumar Kanaujia ◽  
Shweta Srivastava

Since 2002, when the Federal Communication Commission (FCC) released the bandwidth 3.1-10.6 GHz, there has been increasing interest in the use of UWB systems because of their low power consumption, low cost, precise positioning and promising candidate for short-range high-speed indoor data communications. Planar circular monopoles like designs are a good example for UWB applications due to their merits such as ease of fabrication, Acceptable radiation pattern, and large impedance bandwidth. However, some narrowband systems also operate in this frequency like WiMAX, WLAN and X-Band satellite downlink communication band etc. cause interference in UWB range. To overcome any interference with these systems it is desirable to design UWB antenna with band notches. However, most techniques of obtaining notches uses antenna design specific approaches therefore EBG structures can be used to obtain single and multi-notch antennas. The technique used for obtaining notches using EBG is antenna design independent and can be applied to most of the antennas without compromising antenna performance.



2013 ◽  
Vol 38 (9) ◽  
pp. 926-936 ◽  
Author(s):  
Kenneth David Mankoff ◽  
Tess Alethea Russo


Atmosphere ◽  
2015 ◽  
Vol 6 (5) ◽  
pp. 579-606 ◽  
Author(s):  
Sajid Shah ◽  
Riccardo Notarpietro ◽  
Marco Branca


2014 ◽  
Vol 7 (8) ◽  
pp. 8233-8270
Author(s):  
K. Lengfeld ◽  
M. Clemens ◽  
H. Münster ◽  
F. Ament

Abstract. This publication intends to proof that a network of low-cost local area weather radars (LAWR) is a reliable and scientifically valuable complement to nationwide radar networks. A network of four LAWRs has been installed in northern Germany within the framework of the project Precipitation and Attenuation Estimates from a High-Resolution Weather Radar Network (PATTERN) observing precipitation with temporal resolution of 30 s, azimuthal resolution of 1° and spatial resolution of 60 m. The network covers an area of 60 km × 80 km. In this paper algorithms used to obtain undisturbed precipitation fields from raw reflectivity data are described and their performance is analysed. In order to correct for background noise in reflectivity measurements operationally, noise level estimates from the measured reflectivity field is combined with noise levels from the last 10 time steps. For detection of non-meteorological echoes two different kinds of clutter filters are applied: single radar algorithms and network based algorithms that take advantage of the unique features of high temporal and spatial resolution of the network. Overall the network based clutter filter works best with a detection rate of up to 70%, followed by the classic TDBZ filter using the texture of the logarithmic reflectivity field. A comparison of a reflectivity field from the PATTERN network with the product from a C-band radar operated by the German Meteorological Service indicates high spatial accordance of both systems in geographical position of the rain event as well as reflectivity maxima. A longterm study derives good accordance of X-band radar of the network with C-band radar. But especially at the border of precipitation events the standard deviation within a range gate of the C-band radar with range resolution of 1 km is up to 3 dBZ. Therefore, a network of high-resolution low-cost LAWRs can give valuable information on the small scale structure of rain events in areas of special interest, e.g. urban regions, in addition the nationwide radar networks.





2009 ◽  
Vol 20 ◽  
pp. 25-32 ◽  
Author(s):  
J. Van Baelen ◽  
Y. Pointin ◽  
W. Wobrock ◽  
A. Flossmann ◽  
G. Peters ◽  
...  

Abstract. This paper describes an innovative project which has just been launched at the "Laboratoire de Météorologie Physique" (LaMP) in Clermont-Ferrand in collaboration with the "Meteorologische Institut" in Hamburg, where a low cost X-band high resolution precipitation radar is combined with supporting measurements and a bin microphysical cloud resolving model in order to develop adapted Z–R relationships for accurate rain rate estimates over a local area such as a small catchment basin, an urban complex or even an agriculture domain. In particular, the use of K-band micro rain radars which can retrieve vertical profiles of drop size distribution and the associated reflectivity will be used to perform direct comparisons with X-band radar volume samples while a network of rain-gauges provides ground truth to which our rain estimates will be compared. Thus, the experimental suite of instrumentation should provide a detailed characterization of the various rain regimes and their associated Z–R relationship. Furthermore, we will make use of the hilly environment of the radar to test the use of novel attenuation methods in order to estimate rainfall rates. A second important aspect of this work is to use the detailed cloud modeling available at LaMP. Simulations of precipitating clouds in highly resolved 3-D dynamics model allow predicting the spectra of rain drops and precipitating ice particles. Radar reflectivity determined from these model studies will be compared with the observations in order to better understand which raindrop size spectrum shape factor should be applied to the radar algorithms as a function of the type of precipitating cloud. Likewise, these comparisons between the modeled and the observed reflectivity will also give us the opportunity to further improve our model microphysics and the parameterizations for meso-scale models.



2014 ◽  
Vol 7 (12) ◽  
pp. 4151-4166 ◽  
Author(s):  
K. Lengfeld ◽  
M. Clemens ◽  
H. Münster ◽  
F. Ament

Abstract. This publication intends to prove that a network of low-cost local area weather radars (LAWR) is a reliable and scientifically valuable complement to nationwide radar networks. A network of four LAWRs has been installed in northern Germany within the framework of the Precipitation and Attenuation Estimates from a High-Resolution Weather Radar Network (PATTERN) project observing precipitation with a temporal resolution of 30 s, a range resolution of 60 m and a sampling resolution of 1° in the azimuthal direction. The network covers an area of 60 km × 80 km. In this paper, algorithms used to obtain undisturbed precipitation fields from raw reflectivity data are described, and their performance is analysed. In order to correct operationally for background noise in reflectivity measurements, noise level estimates from the measured reflectivity field are combined with noise levels from the last 10 time steps. For detection of non-meteorological echoes, two different kinds of clutter algorithms are applied: single-radar algorithms and network-based algorithms. Besides well-established algorithms based on the texture of the logarithmic reflectivity field (TDBZ) or sign changes in the reflectivity gradient (SPIN), the advantage of the unique features of the high temporal and spatial resolution of the network is used for clutter detection. Overall, the network-based clutter algorithm works best with a detection rate of up to 70%, followed by the classic TDBZ filter using the texture of the logarithmic reflectivity field. A comparison of a reflectivity field from the PATTERN network with the product from a C-band radar operated by the German Meteorological Service indicates high spatial accordance of both systems in the geographical position of the rain event as well as reflectivity maxima. Long-term statistics from May to September 2013 prove very good accordance of the X-band radar of the network with C-band radar, but, especially at the border of precipitation events, higher-resolved X-band radar measurements provide more detailed information on precipitation structure because the 1 km range gate of C-band radars is only partially covered with rain. The standard deviation within a range gate of the C-band radar with a range resolution of 1 km is up to 3 dBZ at the borders of rain events. The probability of detection is at least 90%, the false alarm ratio less than 10% for both systems. Therefore, a network of high-resolution low-cost LAWRs can give valuable information on the small-scale structure of rain events in areas of special interest, e.g. urban regions, in addition to the nationwide radar networks.



Sign in / Sign up

Export Citation Format

Share Document