Author(s):  
Lingyu Sun ◽  
Weiwei Chen ◽  
Xiaojie Wang ◽  
Ning Kang ◽  
Bin Xu ◽  
...  

The present paper studied the dynamic response of an underwater system with its navigation plate rotated relative to the main body until it was blocked by an energy absorber. In this process, the relation between fluid-driving moment and speed of main body, as well as the relation between rotation angle of the plate and design parameters of absorber, was investigated through combined finite element method and finite volume method. Before the plate contacted with the energy absorber, it was modeled by linear elastic material, the movement process was solved by finite volume method with dynamic boundary. When the plate started to contact and crash with the absorber, it was modeled by elastic-plastic material, and the interaction of fluid-structure coupling was simulated by explicit finite element method in LSDYNA and finite volume method in FLUENT. The two-way data exchange on the interface between fluid and structure was carried out through equivalent force and moment on each patch of the interface. In addition, the simulation accuracy on large plastic deformation of absorber was verified through a group of drop hammer experiments. After the energy absorber was crushed to ultimate shape, the open angle of plate reached the maximum value and the plate kept relative static to the rigid body. The maximum structural stress and deformation, the opening time and angle of the plate were evaluated by numerical method. It is demonstrated that the proposed method can effectively predict the dynamic response of underwater system under impact loads, and both the absorption capability of the block and the speed of moving body affect the dynamic response history and structural safety.


2013 ◽  
Vol 392 ◽  
pp. 100-104 ◽  
Author(s):  
Fareed Ahmed ◽  
Faheem Ahmed ◽  
Yong Yang

In this paper we present a robust, high order method for numerical solution of multidimensional compressible inviscid flow equations. Our scheme is based on Nodal Discontinuous Galerkin Finite Element Method (NDG-FEM). This method utilizes the favorable features of Finite Volume Method (FVM) and Finite Element Method (FEM). In this method, space discretization is carried out by finite element discontinuous approximations. The resulting semi discrete differential equations were solved using explicit Runge-Kutta (ERK) method. In order to compute fluxes at element interfaces, we have used Roe Approximate scheme. In this article, we demonstrate the use of exponential filter to remove Gibbs oscillations near the shock waves. Numerical predictions for two dimensional compressible fluid flows are presented here. The solution was obtained with overall order of accuracy of 3. The numerical results obtained are compared with experimental and finite volume method results.


2020 ◽  
Vol 11 (1) ◽  
pp. 125-135
Author(s):  
Anna M. V. Harley ◽  
Sagar H. Nikam ◽  
Hao Wu ◽  
Justin Quinn ◽  
Shaun McFadden

Abstract. Verification, the process of checking a modelling output against a known reference model, is an important step in model development for the simulation of manufacturing processes. This manuscript provides details of a code-to-code verification between two thermal models used for simulating the melting and solidification processes in a 316 L stainless steel alloy: one model was developed using a non-commercial code and the Finite Volume Method (FVM) and the other used a commercial Finite Element Method (FEM) code available within COMSOL Multiphysics®. The application involved the transient case of heat-transfer from a point heat source into one end of a cylindrical sample geometry, thus melting and then re-solidifying the sample in a way similar to an autogenous welding process in metal fabrication. Temperature dependent material properties and progressive latent heat evolution through the freezing range of the alloy were included in the model. Both models were tested for mesh independency, permitting meaningful comparisons between thermal histories, temperature profiles and maximum temperature along the length of the cylindrical rod and melt pool depth. Acceptable agreement between the results obtained by the non-commercial and commercial models was achieved. This confidence building step will allow for further development of point-source heat models, which has a wide variety of applications in manufacturing processes.


2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Alia Al-Ghosoun ◽  
Ashraf S. Osman ◽  
Mohammed Seaid

Purpose The purpose of this study is twofold: first, to derive a consistent model free-surface runup flow problems over deformable beds. The authors couple the nonlinear one-dimensional shallow water equations, including friction terms for the water free-surface and the two-dimensional second-order solid elastostatic equations for the bed deformation. Second, to develop a robust hybrid finite element/finite volume method for solving free-surface runup flow problems over deformable beds. The authors combine the finite volume for free-surface flows and the finite element method for bed elasticity. Design/methodology/approach The authors propose a new model for wave runup by static deformation on seabeds. The model consists of the depth-averaged shallow water system for the water free-surface coupled to the second-order elastostatic formulation for the bed deformation. At the interface between the water flow and the seabed, transfer conditions are implemented. Here, hydrostatic pressure and friction forces are considered for the elastostatic equations, whereas bathymetric forces are accounted for in the shallow water equations. As numerical solvers, the authors propose a well-balanced finite volume method for the flow system and a stabilized finite element method for elastostatics. Findings The developed coupled depth-averaged shallow water system and second-order solid elastostatic system is well suited for modeling wave runup by deformation on seabeds. The derived coupling conditions at the interface between the water flow and the bed topography resolve well the condition transfer between the two systems. The proposed hybrid finite volume element method is accurate and efficient for this class of models. The novel technique used for wet/dry treatment accurately captures the moving fronts in the computational domain without generating nonphysical oscillations. The presented numerical results demonstrate the high performance of the proposed methods. Originality/value Enhancing modeling and computations for wave runup problems is at an early stage in the literature, and it is a new and exciting area of research. To the best of our knowledge, solving wave runup problems by static deformation on seabeds using a hybrid finite volume element method is presented for the first time. The results of this research study, and the research methodologies, will have an important influence on a range of other scientists carrying out research in related fields.


Sign in / Sign up

Export Citation Format

Share Document